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Abstract

This paper expands the applied researcher’s toolkit for dealing with nonlinear panel data models
with unobserved heterogeneity using multivariate fractional outcomes. It presents a wide range of
methods that include maximum likelihood estimation for identifying the structural parameters of
models specified by a conditional mean, a simple and scalable GMM approach using the probit link
that allows to identify average partial effects, and a Bayesian estimator from a latent dependent
variable specification to account for censoring or structural zeros in the data. I then show how all
these methods can be modified to handle continuous endogenous covariates using a control function
approach. A range of simulation exercises showcase the comparative advantages of each method and
how they might be used to approach different situations that arise in applied microeconomics.
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1 Introduction

In many applied microeconomic settings one usually encounters outcome variables that are multivari-
ate fractional. These can arise naturally from a demand estimation setting, where they represent a
household’s expenditure shares across several goods (Woodland, 1979; Barnett and Serletis, 2008); in
micro-finance, to represent the portfolio shares held by individuals or firms across risky assets (Mullahy,
2015); in industrial organization, to represent the market shares of firms in a given industry (Morais
et al., 2018); in health production, to represent time of use across different activities (Mullahy and
Robert, 2010); in analyzing voting patterns for several candidates (Katz and King, 1999); among many
others (Aitchison, 2003). As the name suggest, the unifying characteristic of multivariate fractional
data (or compositional data in the statistics literature) is that they are a set of outcomes, each between
zero and one, that satisfy a unit-sum restriction.

While there have been many developments in creating modeling strategies for this type of data in
a cross-sectional context or for univariate fractions in a panel data setting (Papke and Wooldridge,
1996, 2008; Murteira and Ramalho, 2016), there are currently no comprehensive and flexible way of
modeling multivariate fractions in a panel data setting. That is, a strategy that simultaneously takes
into account the inherent nonlinearity in the partial effects from covariates, unobserved heterogeneity
that is potentially correlated to these covariates, and that imposes the unit-sum restriction present
across the multivariate outcomes. Additionally, we would expect that such a framework would allow to
control for endogeneity issues that are not created by unobserved heterogeneity and should also allow
for structural zeros in the data.1
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1For example, in the demand estimation setting it is standard to have endogeneity arising from prices or behavioural
factors and to observe households not consuming particular categories of goods.
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The main contribution of the paper is to expand the available toolkit for modeling multivariate
fractional outcomes using panel data, where the provided methods address most or all the previously
mentioned requirements that arise naturally in applied microeconomic settings. To this end, I extend
currently available approaches for cross-sectional multivariate fractional outcomes to a panel data
setting and bring panel data methods that operate on univariate fractions to the multivariate case.
This is done in a way that emphasizes robustness and flexibility, while maintaining the advantages of
each framework. Recognizing that different applications are conceived with different objectives in mind,
the paper introduces a wide range of methods that are each suitable for various settings encountered
in applied research.

The first method is maximum likelihood estimation that allows for identification of the parameters
in a conditional mean model (Hartzel et al., 2001). This method will be particularly useful when
an application requires consistent estimation of the parameters, not just the signs or average partial
effects (APEs). This is the case in many applications, particularly those where the conditional mean
specification comes from a structural model, such that the parameters have a direct economic inter-
pretation.2 Of course, given consistent estimation of the parameters, most other quantities of interest
can be consistently estimated. This method also has the potential of being efficient, in contrast to the
other techniques introduced in the paper. While many existing likelihood-based approaches allow the
specification of a distribution on the multivariate fractional outcomes, they can be restrictive or not
generalize well to allow for unobserved heterogeneity and endogenous covariates. For example, this oc-
curs for transformation methods that take the multivariate fractions from the simplex to an unbounded
space before imposing a distributional assumption on the transformed shares. If we wanted to impose a
conditional mean model defined directly on the share components before the transformation, we would
require strong and implausible independence assumptions to recover the parameters of that conditional
mean (Papke and Wooldridge, 1996). This is the case for most non-linear transformations such as the
additive log-ratio (Aitchison and Shen, 1980), centered log-ratio (Aitchison, 1983), isometric log-ratio
(Egozcue et al., 2003), or α (Tsagris et al., 2011) transformations. One could also choose a distribution
directly on the share components that respects a given conditional mean model (Lijoi et al., 2005;
Hijazi and Jernigan, 2009; Scealy and Welsh, 2011), but this approach relies heavily on correct specifi-
cation of the distribution and will not generally be robust to misspecification. The maximum likelihood
methods considered in this paper will allow for direct specification of a conditional mean and at least
some degree of robustness to distributional misspecification, if not full robustness. The treatment and
computation of this method draws on the statistical literature on generalized (non)linear mixed models
for multivariate responses (for a review, see for example Davidian and Giltinan, 1995).

The second method extends Papke and Wooldridge (2008) to the multivariate fractional setting. By
specifying a probit link for each of the shares, we can analytically integrate out unobserved heterogeneity
from the conditional mean specification at the cost of losing identification of the conditional mean
parameters. However, the average partial effects remain identified as long as we assume the probit link
to be correctly specified. The estimator proposed in the paper uses the generalized method of moments
(GMM) to fit the system of non-linear regressions and consistently recover the average partial effects.
If the functional form of the conditional mean for each share in terms of the covariates is not captured
by the probit link, this approach still provides the best mean-squared error approximation to the
APEs that is afforded by the probit link. Simulations exercises in Section 3 show that the probit
approximation is quite good and tends to yield appropriate results for the APEs even when there is
some misspecification in the link function. Additionally, this method is the simplest to estimate and
extend, it is not impeded in any way by the presence of zeros in the multivariate fractions, inference

2This occurs in demand estimation, where structural demand systems usually produce an estimating equation in terms
of a conditional mean (Deaton and Muellbauer, 1980; Banks et al., 1997; Barnett and Serletis, 2008).
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for it can be made fully robust to the potential misspecification of the probit link, and it can be easily
scaled to handle a large amount of shares without much additional computational burden.3

I then discuss a latent dependent variable formulation that accounts for large incidence of cen-
soring or corner outcomes, given by structural zeros in the multivariate fractions. Using the simple
transformation in Wales and Woodland (1983), I extend the Bayesian data-augmentation approach of
Kasteridis et al. (2011) to account for the availability of panel data and correlated random effects.
Accounting for unobserved heterogeneity in this method is then also a multivariate generalization to
Loudermilk (2007).4 The simplicity of this resulting approach is in line with previous literature where
the Bayesian paradigm tends to be preferred to frequentist simulation-based approaches given their
simplicity in dealing with the latent variables (McCulloch et al., 2000). Still, simulation methods such
as the methods of simulated moments (McFadden, 1989) or simulated scores (Hajivassiliou and Mc-
Fadden, 1998) would remain valid given this setting and their exploration in this context could be a
potential avenue for further research. This approach also directly accounts for the presence of zeros in
the multivariate fractions. Other methods that allow for zeros begin with transforming the zeros to a
small but positive quantity that can be incorporated into standard techniques. In these cases, zeros are
usually assumed to be caused by detection errors (not structural zeros) and thus imputation methods
are used to transform the values in some optimal way to try and minimize the ad hoc nature of this
operation (Fry et al., 2000; Mart́ın-Fernández et al., 2003). While some transformations, likelihoods
or regression-based approaches can also deal directly with structural zeros, their application is still
subject to similar caveats as those mentioned before (Stewart and Field, 2011; Tsagris and Stewart,
2018).

The remaining of the paper proceeds as follows. Section 2 reviews the general assumptions and
theory that supports the estimation methods that are then introduced. Special emphasis is made in
implementation of the methods using fully robust inference. Section 3 presents several Monte Carlo
exercises that showcase the comparative advantages of each of the methods, their possible weaknesses
and robustness, as well as specific cases where they will be most useful. Finally, Section 4 presents the
concluding remarks.

2 Methodology

I begin by stating the general assumptions that hold for all the methods considered in the paper. Let
Y be a multivariate fractional outcome of d shares. The unifying characteristic of Y across different
applications is that it is supported on the d-dimensional simplex

Sd =

(y1, . . . , yd) ∈ Rd : 0 ≤ yj ≤ 1, j = 1, . . . , d;

d∑
j=1

yj = 1

 . (1)

That is, each component of Y is a fraction, and taken together, these components add up to one.
For each share Yj , I also assume that we have a Kj-dimensional vector of covariates denoted by Xj .
Similarly, as is customary in panel data models, I allow for the presence of unobserved heterogeneity
that is potentially correlated to the covariates, which is denoted by C. The following assumption

3In the context of demand estimation, this means that using this method it is possible to find the average partial
effects of covariates on expenditure shares for systems of hundreds or thousands of products, such as those encountered
in online shopping applications.

4Loudermilk (2007) allows for dynamics by including the lagged outcome as a regressor. While the previous approaches
require strict exogeneity, the Bayesian method only requires sequential exogeneity for its validity. Thus, while the previous
methods cannot handle a lagged dependent variable as covariate, this is no issue for this Bayesian approach.
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summarizes the type of panel data structures that are within the scope of this paper and which arise
frequently in applied microeconomics.

Assumption 1 (Panel data).

1. Let (Y ′,X ′,C)′ be a (2d+K)-dimensional random-vector with true distribution H, where Y =
(Y1, . . . , Yd)

′ takes values on Sd, X = (X ′
1, . . . ,X

′
j)

′ has support X ⊂ RK1+···+KD with K =
K1 + · · ·+Kd, and C = (C1, . . . , Cd)

′.

2. There is access to a random sample of size n from H in the cross section, given by {Y ′
i ,X

′
i}ni=1,

where Yi ∈ ×Ti
t=1Sd. That is, for each random draw i there are Ti time periods, and within each

i and time period t, the outcomes are multivariate fractional.

The first part of Assumption 1 introduces unobserved heterogeneity as part of the true distribution
that defines the population of interest. Emphasizing this true distribution will also allow us to discuss
inference that takes into account possible misspecification in the maximum likelihood method that is
presented shortly. From the second part, note that the paper is sufficiently general as to allow for
unbalanced panels, but it does assume that the reason for the unbalance is completely at random. In
this sense, the methods introduced in the paper will not remain valid under possible issues of attrition
or other sample selection rules that are dependent on the covariates. Of course, since C is unobserved
by definition, it does not show up in the information available to the econometrician for estimation and
inference. Additionally, at this point I note that all the asymptotic results in the paper rely on short
panels; i.e., where Ti is taken as fixed while the cross section n goes to infinity. The dimensionality of
the simplex given by d is not restricted and we will introduce methods that allow for d to be large,
which might occur, for example, in a demand estimation problem with many goods in consideration.
With this in mind, I now consider the following estimation procedures that will contain some more
specialized assumptions conditional on the inferencial goal of each method.

2.1 Maximum Likelihood Estimator

For this and the next subsection, we need to assume a conditional mean model that relates the multi-
variate fractional outcome Y to the covariates X and the unobserved heterogeneity C. One possibility
would be to assume for each i = 1, . . . , n, t = 1, . . . , Ti, and j = 1, . . . , d,

E[Yitj |Xitj = xitj , Cij = cij ] = mj(x
′
itjβ0,j + cij) ,

for some β0,j ∈ Bj ⊂ RKj , where cij represents time-invariant unobserved heterogeneity for each
individual i in outcome equation j, and the functions mj(·) would satisfy 0 < mj(z) < 1 and∑d

j=1mj(z) = 1 for all z ∈ R, j = 1, . . . , d. However, the unit-sum restriction on the link func-
tions and the outcome shares creates an identification problem that prevents us from proceeding with
this approach. As noted by Montoya-Blandón (2021), the fact that the outcome variables are supported
on Sd prevents the recovery of one of the parameter vectors β0,j , j = 1, . . . , d as all information about
one of the outcomes can be obtained from the distribution of the others. To address this issue, we
will instead work with the D ≡ d− 1 dimensional system by setting a base category, assumed to be d
hereafter. This conditional mean would also miss an interesting possibility that I use as the basis for
the two special cases of a maximum likelihood estimator in this setting. Thus, I instead introduce the
following assumption.

Assumption 2 (Conditional mean). For each i = 1, . . . , n, t = 1, . . . , Ti, and j = 1, . . . , d,

E[Yitj |Xit, ci] = mj(Xitβ0 + ci) , (2)
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for some β0 = (β′
1, . . . ,β

′
D)

′ ∈ B ⊂ RK , whereK =
∑D

j=1Kj , ci = (ci1, . . . , ciD)
′, and the link functions

are defined for all j = 1, . . . , d as mj : RD → R to satisfy 0 < mj(z) < 1 and
∑d

j=1mj(z) = 1 for all

z ∈ RD. Finally, Xit is a D ×K matrix defined as

Xit =

 x′
it1 · · · 01×KD

...
. . .

...
01×K1 · · · x′

itD


This assumption introduces a few key ideas. First, as is usual in panel data models, dealing with ci will
be one of the main challenges of obtaining reliable estimators (Wooldridge, 2010, section 10). Second,
we have a family of link functions mj(·) where each outcome can potentially depend on the covariates
and unobserved heterogeneity of all other outcomes, allowing for very rich dependence between shares.
Third, note that it is assumed there is a true β0 such that the conditional mean assumption holds for
all outcomes. Finally, note that (2) is general enough to allow for outcome-specific intercepts, time
effects and covariates, while allowing for the same covariates to enter different share equations and
having possibly time-invariant covariates. It is also assumed that xitj contains a 1 at the beginning of
the vector for each j = 1, . . . , D.

Throughout the paper, we will need stacked versions of (2) across outcomes and time. These are
given by

E[Yit|Xit, ci] =m(Xitβ + ci) (3)

and

E[Yi|Xi, ci] =mTi(Xiβ, ci) , (4)

where Yit = (Yit1, . . . , YitD)
′ and m(Xitβ + ci) = (m1(Xitβ + ci), . . . ,mD(Xitβ + ci))

′ are D-
dimensional vectors, Yi = (Y ′

i1, . . . ,Y
′
iTi

)′ and mTi(Xiβ, ci) = (m(Xi1β + ci)
′, . . . ,m(XiTiβ + ci)

′)′

are DTi-dimensional vectors, and Xi =
[
X ′

i1 · · · X ′
iTi

]′
is a DTi ×K matrix.

As noted by Papke and Wooldridge (2008), assumptions 1 and 2 on their own are not enough
to carry out estimation of the conditional mean parameters . To this end, I make two additional
assumptions.

Assumption 3 (Strict exogeneity). For all i = 1, . . . , n, and j = 1, . . . , d,

E[Yitj |Xi, ci] ≡ E[Yitj |Xi1, . . . ,XiTi , ci] = E[Yitj |Xit, ci] .

Assumption 4 (Mundlak device). For all i = 1, . . . , n,

ci|Xi1, . . . ,XiTi ∼ N (X̄iξ,Γ) , (5)

where X̄i = (1/Ti)
∑Ti

t=1Xit are the time averages for the time-varying covariates, ξ is a K-dimensional
coefficient vector and Γ is a D ×D covariance matrix.

Assumption 3 is standard and simply states that, conditional on unobserved heterogeneity, the co-
variates are uncorrelated to time-varying unobservables. It also rules out the use of lagged dependent
variables as covariates or explanatory variables that correlate to paste values of the outcome variables
(Papke and Wooldridge, 2008). Assumption 4 is a correlated random effect (CRE) assumption that
uses Mundlak’s (1978) device for specifying the relationship between covariates and unobserved het-
erogeneity. Note that under a pure random effects assumption, ξ = 0 and there would be no need to
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worry about correlation with unobserved heterogeneity. Of course, a more flexible model such as that
by Chamberlain (1980) could be allowed, at the expense of slightly more complex models. The use
of (5) is made for convenience and to allow for particularly simple estimation methods for β. Other
non or semiparametric alternatives that assume less structure on the distribution of ci conditional on
Xi1, . . . ,XiTi are also available, again at the expense of more intensive computations (Hartzel et al.,
2001). As the maximum likelihood method to be introduced shortly can already be computationally
demanding, this paper maintains (5) for simplicity. Finally, the paper does not consider fixed effects
transformations to eliminate ci, as these require correct specification (of both H and m) and are only
available for a handful of distributions with special forms and sufficient statistics (see, e.g., Magnac,
2004).

Note that, given (5), we can write ci = X̄iξ+bi, where bi|Xi1, . . . ,XiTi ∼ N (0,Γ). Replacing this
into (3) and using Assumption 3 yields

E[Yit|Xi, ci] =m(Xitβ + X̄iξ + bi) .

Writing X̃it =
[
Xit X̄i

]
and α = (β′, ξ′)′, we can then find

E[Yit|Xi, ci] =m(X̃itα+ bi) , (6)

with bi independent of X̃it. This is of the same form as (3) but with bi representing unobserved
heterogeneity that is uncorrelated from the covariates. For notational simplicity, the remaining of the
paper assumes that (3) (and thus 4) represents a random effects specification, so that ci can be taken
as independent from covariates Xit. Keep in mind that this will only be true after the transformation
given by (6) if the original covariates are thought to be correlated to unobserved heterogeneity, which
is usually the case in most applications. A subtle point is that for the computation of average partial
effects, or any derivation that follows from the original conditional mean model in (2), X̄i needs to be
integrated out for each t = 1, . . . , Ti (Papke and Wooldridge, 2008).

Armed with Assumptions 1 through 4, I can now present the general maximum likelihood esti-
mator for multivariate fractional outcomes and two interesting special cases. Let F (·;β) denote a
D-dimensional distribution for Yit|Xit, ci that satisfies (3). As the random effects ci (or bi after the
transformation in 6) are unobserved, we need to integrate over them in the definition of the likelihood.
Assuming conditional independence across t, we can define the log-likelihood contribution for each i in
this problem as

ℓ
(ind)
i (β,Γ) = log

∫ ∞

−∞
· · ·
∫ ∞

−∞

[
Ti∏
t=1

F (Yit|Xit, ci;β)

]
ϕD(ci;0D×1,Γ) dci , (7)

where ϕD(·;µ,Σ) is the density of a D-dimensional normal distribution with mean vector µ and
covariance matrix Σ. A second approach that does not impose conditional independence across time,
is given by the pooled likelihood approach

ℓ
(pool)
i (β,Γ) =

Ti∑
t=1

log

∫ ∞

−∞
· · ·
∫ ∞

−∞
F (Yit|Xit, ci;β)ϕD(ci;0D×1,Γ) dci . (8)

Writing θ = (β′, vech(Γ)′)′, where vech(·) is the half-vectorization operator that selects the lower
triangular portion of a square matrix, we have that a general maximum likelihood estimator based on
either (7) or (8) is given by

θ̂l ≡ argmax
θ

1

n

n∑
i=1

ℓ
(l)
i (θ), l ∈ {ind, pool} . (9)
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For l ∈ {ind,pool}, if we do not assume correct specification of F , general quasi-likelihood theory, such
as that in White (1982), yields consistency of θ̂l to the minimizer of the Kullback-Leibler divergence
between F and H, denoted as θ∗l . Furthermore, if F is chosen to be a member of the linear exponential
family, as long as the link functionm is correctly specified, then the β∗ component of θ∗l will equal the
β0 specified in Assumption 2 (Gourieroux et al., 1984). This is the basis for one of the special cases
introduced as Estimator 1. The second special case, Estimator 2, specifies F using a copula approach.
Following the results in Montoya-Blandón (2021), we observe that as long as the marginals in F
are correctly specified (which again requires correct specification of the link), even if the dependence
structure is not, then β∗ = β0 also holds. In both of these cases, we can thus guarantee consistent
estimation of the underlying conditional mean parameters β0.

Once consistency is established, the results in the previously mentioned literature can be used to
obtain asymptotic normality of

√
n(θ̂l − θ∗l ) with asymptotic variance given by

Asy.Var(
√
n(θ̂l − θ∗l )) = A−1

l BlA
−1
l , (10)

where Al = EH [∂2ℓ
(l)
i (θ)/∂θ∂θ′] is the Hessian matrix of the log-likelihood contributions, Bl =

EH [∂ℓ
(l)
i (θ)/∂θ · ∂ℓ(l)i (θ)/∂θ′] is the outer product of the scores, and the notation EH emphasizes

that the expectation is taken with respect to the true distribution. Inference that is fully robust to
possible distributional misspecification (and to autocorrelation in the scores in the case of the pooled
log-likelihood approach) follows from using

Âl =
1

n

n∑
i=1

∂2ℓ
(l)
i (θ̂l)

∂θ∂θ′
and B̂l =

1

n

n∑
i=1

∂ℓ
(l)
i (θ̂l)

∂θ
·
∂ℓ

(l)
i (θ̂l)

∂θ′
, (11)

to estimate the asymptotic variance in (10). The way this model is specified is similar to nonlinear
mixed models (or generalized mixed models if F is assumed to be a distribution from the linear
exponential family) used heavily in the statistics literature (Davidian and Giltinan, 1995). Pinheiro
and Bates (1995) is a standard reference for computation of the integrals in (7) or (8). For adaptive
(Liu and Pierce, 1994) or nonadaptive (Jäckel, 2005) quadrature, Appendix A presents some general
formulas to compute these integrals. Whereas the literature tends to favor Laplace approximations
to these integrals, quadrature or Monte Carlo methods should be used in this case, as we will usually
want to assume a distribution that is not necessarily correctly specified. A Laplace approximation
to an already misspecified distribution would likely introduce larger bias into the estimation process.
Quadrature methods will also be reliable only for a small dimension D as the number of evaluations
grows exponentially with D. For larger dimensions, one could use an expectation-maximization (EM)
algorithm as outlined in Hartzel et al. (2001). When deciding between each method it is also important
to keep in mind that the pooled approach requires more integral evaluations; (7) requires n integrals
to be computed, while (8) requires

∑n
i=1 Ti of them (or nT for a balanced panel).

Based on the previous formulas, the paper proposes two special cases that will be of particular
interest in applications. Both start from a multinomial logit conditional mean as it satisfies the unit-
sum restriction given in Assumption 2. That is, these estimators take m(·) as

m(X ′
itβ + ci) =


exp(x′

itjβj+cij)
1+

∑D
p=1 exp(x′

itpβp+cip)
for j = 1, . . . , D ,

1
1+

∑D
p=1 exp(x′

itpβp+cip)
for j = d .

(12)

Estimator 1 (Multinomial Logit QMLE).
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1. Use

F (Yit|Xit, ci;β) =
d∏

j=1

m
yijt
ijt ,

in either (7) or (8) with mitj ≡ mj(X
′
itβ + ci) according to the multinomial logit link.

2. Estimate θ̂ as in (9) computing the integrals as in Appendix A.

3. As the multinomial likelihood is inherently misspecified, use the fully robust estimators given in
(11).

Appendix B contains a formula for the score ∂ℓ
(l)
i (θ)/∂θ that can be used to motivate a quasi-

Newton algorithm as in Hartzel et al. (2001) and also to obtain the fully robust variance estimator.
As in Papke and Wooldridge (1996), this estimator, while being inherently misspecified, should achieve
some optimality properties in the class of linear exponential families for this problem. Another possible
approach would be to specify a population-averaged estimator that uses general estimating equations
(GEE) to gain efficiency (Liang and Zeger, 1986). These would start by specifying E[Yitj |Xit] directly
as in (2), perhaps using a multinomial logit link. Note that no model would actually correspond to
this link after integration of the random effects. Additionally, given that the multinomial distribution
is inherently misspecified, it might not be worthwhile to attempt to gain more efficiency by correctly
specifying other features of the distribution. Thus, I recommend the use of the fully robust approach
as noted Estimator 1.

If efficiency is a concern, there is another route. As shown in Montoya-Blandón (2021), copulas can
be used to model multivariate fractional outcomes in a way that achieves flexibility in the dependence
patterns between shares, while retaining some robustness to distributional misspecification. Further-
more, if the copula and marginals are correctly specified, this leads to an efficient maximum likelihood
approach. This is summarized in the following procedure.

Estimator 2 (Multinomial Logit Copula).

1. Choose marginals Gj(·;β, ϕj), j = 1, . . . , D that satisfy (12), such as beta distributions, and
copula G(·;ψ), for example a Gaussian copula. Then, use

F (Yit|Xit, ci;β,ϕ,ψ) = g(G1(yit1|Xit;β, ϕ1), . . . , GD(yitD|Xit;β, ϕD);ψ)

×
D∏
j=1

gj(yitj |Xit;β, ϕj) ,

in either (7) or (8). The copula approach adds some additional precision parameters for the
marginals and dependence parameters for the copula (which can be misspecified). Compute the
integrals as in Appendix A.

2. Estimate (θ′,ϕ′,ψ′) as in (9).

3. If the copula is potentially correctly specified, use Â−1
l as the estimator for the asymptotic variance

in (10). Otherwise, use the fully robust (11).

Estimator 2 also encompasses the use of a Dirichlet joint distribution with a multinomial logit
link, as this can be expressed using an independent copula with beta marginals after a transformation
(Connor and Mosimann, 1969; Hijazi and Jernigan, 2009). If there is no reason to believe that the
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copula might be correctly specified, then by using the fully robust asymptotic variance estimator in
both the multinomial logit and copula models, we would usually expect Estimator 1 to actually be
more efficient, as it has to estimate less parameters to arrive at a solution. This is studied numerically
in Section 3.

As a final consideration, recall that these estimators can recover the conditional mean parameters
(and random effects variance) that can then be used to estimate the average partial effects by estimating
the derivatives of covariates with respect to (12). However, if our only goal was to consistently estimate
these partial effects, you could simply estimate a multinomial logit link via quasi-maximum likelihood
and obtain average partial effects as noted in Wooldridge (2005), which requires no integration. While
this is a perfectly valid approach, this method would not generalize well to the inclusion of possible
endogenous covariates. Thus, we instead consider the probit link version of this issue in the next
subsection, that does allow for simple inclusion of endogeneity.

2.2 Probit Estimator

With the notation and assumptions outlined in the previous subsection, it becomes easy to define a
very simple estimator that parallels that in Papke and Wooldridge (2008). This time, instead of a
multinomial logit link, assume a probit link for each share:

E[Yit|Xit, ci] =m(Xitβ + ci) =

 Φ(x′
it1β1 + ci1)

...
Φ(x′

itDβD + ciD)

 ,

where Φ(·) is the standard normal cumulative distribution function (CDF). Using the properties of
the normal CDF, we can readily integrate the unobserved heterogeneity from the conditional mean
function to arrive at

E[Yit|Xit] =


Φ

(
x′
it1

(
β1√
1+γ2

1

))
...

Φ

(
x′
it1

(
βD√
1+γ2

D

))
 =

 Φ(x′
it1β1c)
...

Φ(x′
itDβDc)

 , (13)

where for j = 1, . . . , D, βcj = βj/(1 + γ2j )
1/2 and γ2j is the j-th diagonal element of Γ. Thus, similarly

to Papke and Wooldridge (2008), identification of the conditional mean parameters is no longer possible
(and the same is true for Γ) but the average partial effects are still identified. Indeed, as shown by
Wooldridge (2005), the average partial effect of covariate xitjk on outcome yitj is given as the derivative
or difference (if it is categorical) of

Ex̄ij [Φ(x
′
itjβcj + x̄

′
ijξcj)] (14)

where ξcj = ξj/(1 + γ2j )
1/2 and I explicitly include x̄ij to emphasize that it is being integrated out

of this unconditional expectation. Then, given a consistent estimator of the scaled parameters of
the probit link, the average partial effects can be identified. In obtaining this consistent estimator,
however, we run into an important issue: the probit link itself does not necessarily satisfy Assumption
2. Specifically, define md(Xitβ + ci) = 1 −

∑D
j=1Φ(x

′
itjβj + cij). Then it is not necessarily the case

that md(Xitβ + ci) > 0, as the probit link does not collectively impose
∑D

j=1Φ(x
′
itjβj + cij) < 1 as is

done by the multinomial logit link. This would imply that the conditional mean might not be correctly
specified, and thus estimating βc from (13) might not consistently estimate β0c.
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However, it is important to note that this method would still provide the best probit link approx-
imation to each of the conditional mean functions for each fraction separately. By also taking into
account the correlation between each share in the system, it operates in a way similar to a seemingly
unrelated regressions (SUR) approach. That is, imagine fitting a probit link conditional expectation
to each fractional outcome Yitj using panel methods, where the base category is taken to be 1−Yitj . If
we expect this to be a correctly specified model, then we would be consistently estimating β0,j . If we
repeat this thought experiment for each j = 1, . . . , D, and accept the probit link as a correctly specified
link at each step, then the multivariate solution that approximates each of the conditional means while
taking into account the correlation between shares should be a good approximation to the system as a
whole. Finally, the method provides this approximation for the coefficients and partial effects in a way
that is simple, computationally fast, and can incorporate continuous endogenous covariates using stan-
dard control function arguments (Papke and Wooldridge, 2008). We can also proceed with estimation
by multivariate nonlinear least squares and adjust inference for the use of a potentially misspecified
conditional mean function.

Formally, writing αc = (βc, ξc) and given the objective function contribution

qi(αc) ≡ q(Yi,Xi;αc) =
1

2
[Yi −mTi(X̃iαc)]

′[Yi −mTi(X̃iαc)] (15)

the pooled multivariate nonlinear least squares estimator of αc = (βc, ξc) with the probit link is found
as

α̂c ≡ argmin
αc

1

2

n∑
i=1

Ti∑
t=1

[Yit −m(X̃itαc)]
′[Yit −m(X̃itαc)]

= argmin
αc

1

2

n∑
i=1

Ti∑
t=1

D∑
j=1

[yitj − Φ(x̃′
itjαcj)]

2 (16)

where the definitions of x̃ and α come from (6). Thus, as outlined in White (1981) and section 12.3 of
Wooldridge (2010), even if the probit link is potentially misspecified as a conditional mean for the mul-
tivariate fractions, α̂c is consistent to the value α∗

c that creates the best probit link approximation, in a
mean squared error sense, to the true conditional mean E[Yit|Xit]. Furthermore, if

∑D
j=1Φ(x̃

′
itjα̂cj) < 1

for all i and t, we have no reason to expect that the probit link approximation would be a poor one.
Asymptotic normality centered around α∗

c also holds, so that
√
n(α̂c−α∗

c) is asymptotically normal
with asymptotic variance given by

Asy.Var(
√
n(α̂c −α∗

c)) = A−1BA−1 , (17)

where, similar to the previous subsection, A = EH [∂2qi(αc)/∂αc∂α
′
c] is the Hessian matrix of the

objective contributions and B = EH [∂qi(αc)/∂αc · ∂qi(αc)/∂α
′
c] is the outer product of the scores. By

using the full Hessian that does not assume EH [Yi −mTi(X̃iαc)] = 0, inference is made robust to the
possible misspecification of the probit link, as well as autocorrelation in the scores. Estimation of the
asymptotic variance in (17) follows as

Â =
1

n

n∑
i=1

∂2qi(α̂c)

∂αc∂α′
c

and B̂ =
1

n

n∑
i=1

∂qi(α̂c)

∂αc
· ∂qi(α̂c)

∂αc

′
. (18)

Given that the probit link is a simple special case, formulas for both the scores and Hessian are available;
these are given in Appendix B. This procedure is summarized as follows.

Estimator 3 (Probit pooled multivariate NLS).
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1. Estimate αc from (16) by pooling across observations, time and outcome equations with the
probit link.

2. For fully robust inference, estimate the covariance matrix for α̂c from (18) using the formulas in
Appendix B.

If the probit link is deemed to be a good approximation, a possible next step to gain efficiency
is to use a two-step estimator that specifies a weighted adjustment to the objective function in (15).
As the estimator defined in (16) is also a generalized method of moments (GMM) estimator with an
identity weighting matrix, the two-step choice could be implemented by using a different weight matrix
choice. While the identity choice does not incorporate the correlation structure between the shares,
this correlation is accounted for in the inference step when using the estimators (18). Furthermore,
both consistency and asymptotic normality is unaffected; the choice of weighting matrix should only
affect efficiency concerns. Given that there is a potential misspecification problem, once again it does
not seem worthwhile to pursue larger efficiency gains if a crucial part of the distribution might not be
correct. For more details, see, e.g., section 12.4 in Wooldridge (2010).

2.3 Bayesian Latent Variable Estimator

While the previous methods are able to handle zeros in the data naturally, they do not account for the
possibly large probability that might accumulate at 0 for some fractions (Liu et al., 2020). There is
now abundant research in ways to deal with these zeros in multivariate fractional outcomes. However,
to account for non-trivial probability at zero; i.e., censoring for corner outcomes, the literature usually
focuses on limited dependent variable approaches. To this end, I maintain Assumptions 1, 3 and 4.5 I
will assume the following limited dependent variable (LDV) model holds for all i, t, and j:

y∗itj = x
′
itjβj + cij + εitj .

Here, y∗itj is an unobservable latent variable. We can stack the previous model as before, to obtain

Y ∗
i =X ′

iβ +Wici + εi ,

where the definitions mimic those in (4) with the addition ofWi = ιTi⊗ID, a DTi×D matrix, where ιTi

is a Ti-dimensional vector of ones and ITi is a Ti × Ti identity matrix. To allow for possible autocorre-
lation and contemporaneous correlation between outcomes, I assume εi ∼ NDTi(0DTi×1, λ

−1
i (Ωi ⊗Σ)).

In this specification Σ is a D × D contemporaneous covariance matrix that is left unrestricted, Ωi

is assumed to be known or to be the result of a specific VARMA process whose parameters need to
be estimated, and λ−1

i is a precision parameter. As outlined by Chib (2008), if λi is given a gamma
G(ν/2, ν/2) prior and integrated out, then εi would have a marginal multivariate t distribution with
ν degrees of freedom and scale matrix Ωi ⊗ Σ. That is, we can allow for robust non-normal errors by
giving the precision parameter an appropriate prior.

Now, in contrast to a usual probit or Tobit LDVs, there is no unified way to map the latent variables
Y ∗
it to the simplex Sd and obtain its inverse transformation. Even when focusing to those that allow

for zeros, there have been several proposals in the literature, such as re-scaling the sum of the positive
Y ∗
it (Wales and Woodland, 1983), via Box-Cox transformations of ratios of variables (Fry et al., 2000;

Tsagris et al., 2011), by minimizing the Euclidean distance from Y ∗
it to Sd (Butler and Glasbey, 2008),

among others. Due to the computational simplicity of the resulting simulation scheme, I focus on

5As noted by Chib (2008), Bayesian estimation can usually relax the strict exogeneity assumption for one of sequential
exogeneity, given the distributional assumptions and dynamic completeness of the resulting likelihoods.
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the scaling transformation given by (Wales and Woodland, 1983) and described as part of a Bayesian
cross-sectional approach in Kasteridis et al. (2011).

This approach fixes the sum of the underlying latent variables to 1, and transforms to observable
variables supported on Sd by using

yitj =
max{y∗itj , 0}

1−
∑

(t,p)∈Ei
y∗itp

, (19)

for all i, t, and j, where Ei = {1 ≤ t ≤ Ti, 1 ≤ j ≤ D : y∗itj ≤ 0}. The censored set is defined in this way
given that εi is not necessarily independent over time and thus both temporal and contemporaneous
correlations will influence whether a particular latent observation falls into the censoring set or not.
It will also be necessary for the simulation algorithm to be introduced shortly. Note that fixing the
sum is related to the identification issue mentioned previously, as not constraining the support of Y ∗

it

results in infinitely many solutions to the inverse problem of finding the Y ∗
it that generate a particular

observable Yit.
The Bayesian paradigm recognizes that Assumption 4 is simply a prior distribution on the correlated

random effects. For simplicity, I once again assume that ci directly represents a random effect, as
would occur after employing the Mundlak device. By assigning prior distributions to the remaining
parameters over which there is uncertainty, we can combine them with the likelihood implied by the
normality assumption on εi to produce a posterior distribution. I assume the following normal and
inverse Wishart conjugate prior distributions on the remaining model parameters:

β ∼ N (β0,B0) ,

Γ ∼ IW(νΓ,RΓ) ,

Σ ∼ IW(νΣ,RΣ) .

(20)

The data augmentation approach due to Albert and Chib (1993) that is common in Bayesian estimation
of LDVs includes the Y ∗

i as parameters (McCulloch et al., 2000). Thus, with these prior distributions
in place, the posterior for all the parameters β, Y = (Y ∗′

1 , . . . ,Y ∗′
n )′, c = (c′1, . . . , c

′
n)

′, Γ, Σ, and
λ = (λ1, . . . , λn) conditional on data Y = (Y ′

1 , . . . ,Y
′
n)

′,X = (X ′
1, . . . ,X

′
n)

′, andW = (W ′
1, . . . ,W

′
n)

′,
denoted by π(·|·) yields

π(β,Y ∗, c,Γ,Σ,λ|Y ,X,W ) ∝
n∏

i=1

{[
Ti∏
t=1

D∏
j=1

I(yitj = 0)I(y∗itj ≤ 0)

+ I(yitj > 0)I

(
yitj =

y∗itj
1−

∑
(t,p)∈Ei

y∗itp

)]

× ϕDTi(Y
∗
i ;X

′
iβ +Wici;λ

−1
i (Ωi ⊗Σ))

}
× π(β)π(c)π(λ)π(Γ)π(Σ) .

(21)

In this equation, π(·) for each parameter refers to their assumed prior distribution and I(·) denotes an
indicator function that is equal to 1 when its argument is true and 0 otherwise. Note that for all i,
t and j such that yitj = 0, the posterior implies a normal distribution for y∗itj truncated to (−∞, 0].
For all positive parameters, the distribution is singular and puts all mass at the inversely transformed
values given by

y∗itj = yitj

(
1−

∑
(t,p)∈Ei

y∗itp

)
. (22)
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From (21), we can obtain the conditional distribution of each parameter on all other model parameters
and the data to propose a Gibbs sampling scheme to simulate from the posterior. This is summarized
in the following procedure and uses the usual Bayesian updates with conjugate priors under normality
(see, e.g., Chib, 2008).

Estimator 4 (Bayesian LDV estimator). For simplicity, this assumes that λ = ιn and Ωi = ITi but
incorporating other structures is simple. At the s-th simulation step:

1. For each i, draw y
∗(s)
itj for all those (t, j) ∈ Ei from

T N (−∞,0](µitj|−(tj), σ
2
itj|−(tj)) ,

where T N represents a truncated normal distribution with mean given by µitj|−(tj) = E[y∗itj |Y
∗(s−1)
i,−(tj) ,β,Γ,Σ],

variance σ2
itj|−(tj) = Var(y∗itj |Y

∗(s−1)
i,−(tj) ,β,Γ,Σ), and where Y ∗

i,−(tj) denotes the vector Y
∗
i excluding

the tj component. Calculate the remaining components of Y
∗(s)
i with (t, j) /∈ Ei via (22).

2. Draw β(s)|Y ∗(s),Γ(s−1),Σ(s−1) ∼ N (β̄(s), B̄(s)) where

B̄(s) =

(
B−1

0 +

n∑
i=1

X ′
iV

−1(s−1)
i Xi

)−1

,

β̄(s) = B̄(s)

(
β−1
0 +

n∑
i=1

X ′
iV

−1(s−1)
i Y

∗(s)
i

)−1

,

V
(s−1)
i = (ITi ⊗Σ(s−1)) +WiΓ

(s−1)W ′
i .

3. For each i, draw c
(s)
i |Y ∗(s),β(s),Γ(s−1),Σ(s−1) ∼ N (c̄

(s)
i , Γ̄

(s)
i ) where

Γ̄i =
[
Γ−1(s−1) +W ′

i (ITi ⊗Σ−1(s−1))Wi

]−1
,

c̄i = Γ̄iW
′
i (ITi ⊗Σ−1(s−1))(Y

∗(s)
i −Xiβ

(s)) .

4. Draw Γ̄(s)|c(s)i ∼ IW(ν̄, R̄
(s)
Γ ) where

ν̄Γ = νΓ + n ,

R̄
(s)
Γ = RΓ +

n∑
i=1

c
(s)
i c

′(s)
i .

5. Draw Σ̄(s)|c(s)i ∼ IW(ν̄, R̄
(s)
Σ ) where

ν̄Σ = νΣ +
n∑

i=1

Ti ,

R̄
(s)
Γ = RΓ +

n∑
i=1

e
′(s)
i e

(s)
i ,

and ϵ
(s)
i is a Ti ×D matrix such that vec(e

′(s)
i ) = Y

∗(s)
i −Xiβ

(s) −Wic
(s)
i ; i.e., the i-th residuals

in matrix form. This is perhaps the only nonstandard update that arises from the connection
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between the vector representation of the distribution for εi with the matricvariate representation
(see section A.1.12 of Greenberg, 2012). That is, given that εi ∼ NDTi(0DTi×1, ITi ⊗ Σ), then
define the Ti × D random matrix ϵi such that vec(ϵ′i) = εi. Then ϵi ∼ NTi×D(0Ti×D,Ωi,Σ) is
matricvariate normal.

An important final observation is that, just as the LDV approach recognizes the use of Assumption
4 as a prior distribution, the same could be done for the maximum likelihood approach in Section 2.1.
While the main deterrent from using Bayesian analysis for this class of generalized or nonlinear mixed
effects models has been computational, there are now many available tools that allow for simulating the
posterior of a system using priors (20) along with the likelihoods given in (7) or (8). Furthermore, as
Fong et al. (2010) point out, the use of priors for the covariance matrix of the random effects allows for
a more realistic inclusion of the uncertainty of these estimates in contrast to the use of a single estimate.
This would be reflected as more believable standard errors for the estimated panel coefficients.

3 Numerical Exercises

To test the performance and comparative advantages of each method, I present several Monte Carlo
exercises. To ensure that each method satisfies the assumptions laid out in the previous section and
to test them under distinct conditions that might be found in practice, I use several data-generating
processes to test each estimator. Some of these should be well-suited to the specifics of each method
while others will test their robustness to possible misspecification. To keep matters concise, I will be
focusing specifically on the procedures outline in Estimators 1 through 4.

3.1 Copula Data-Generating Process

Given that the multinomial logit is a misspecified distribution by construction, it does not allow for
the generation of data that could be used to test the behavior of Estimators 1 and 2 under correct
specification. Therefore, the first Monte Carlo exercise draws variables from a copula model as that
in Montoya-Blandón (2021). Specifically, I will use a Gaussian copula with beta marginals and a
multinomial logit link, which was found to be one of the most numerically stable and robust methods
both for generation and estimation. To this end, I draw pseudo observations u1, . . . uD from the
Gaussian copula density

c(u1, . . . , uD) =
1√
detR

exp

−1

2

[
Φ−1(u1) · · · Φ−1(uD)

]
· (R−1 − ID) ·

Φ
−1(u1)
...

Φ−1(uD)


 ,

with D × D correlation matrix R, where Φ−1(·) is the quantile function for the standard normal
distribution. I then use the probability integral transform to guarantee that the draws are from beta
marginals in a mean-precision parameterization. Thus, for each j in 1, . . . , D, uj is transform by the
inverse of the cumulative distribution function of the beta density with mean mj and precision ϕj ,
which is given as

Γ(ϕj)

Γ(mj)Γ[(1−mj)ϕj ]
y
mjϕj

j (1− yj)
[1−mj ]ϕj ,

for 0 < yj < 1. In this first scenario, I draw D = 2 shares (yit1, yit2) for i = 1, . . . , n individuals with
n ∈ {100, 200} and t = 1, 2 time periods for a total of 200 or 400 observations on each share. The
third share yit3 is set to 1 − yit1 − yit2 for all i and t. I set β0 = (β′

1,β
′
2)

′ with β1 = (−1, 0.5, 0)′ and
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β2 = (−1.5, 0, 0.5)′. Two covariates xit1 and xit2 are drawn from standard normal distributions and
unobserved heterogeneity is added in the form of a random effect ci drawn from a multivariate normal
distribution with zero mean and covariance matrix Γ with Γ11 = Γ22 = 1 and Γ12 = Γ21 = 0.5. I assume
a multinomial logit link as that given in (12) for the means mit1 and mit2 of each beta distribution.
The precision parameters are set to ϕ1 = ϕ2 = 10 and a correlation of ρ = 0.5 is used to form matrix
R for use in the Gaussian copula density.

Across 500 Monte Carlo simulations with the previous baseline scenarios, the multinomial quasi-
maximum likelihood (QMLE) and the copula maximum likelihood estimators were calculated using the
conditionally independent version of the likelihood, as in (7) and use nonadaptive quadrature with 10
evaluation points in each dimension. For a given application, I would recommend using the nonadaptive
version with a larger number of evaluation points as a starting point to then use the adaptive version
with relatively fewer until the differences are not noticeable between successive estimates. The probit
pooled multivariate nonlinear least squares (PMNLS) is by far the most efficient method, as it has no
need for evaluating integrals and the availability of scores and Hessian greatly simplify the computation
of robust inference.

Table 1: RMSE for Coefficients in a from a Gaussian Copula with Beta Marginals and Multinomial
Logit Link

Method β1,0 β1,1 β1,2 β2,0 β2,1 β2,2
nT = 200

Multinomial QMLE 0.113 0.095 0.084 0.114 0.088 0.094
Copula MLE 0.187 0.080 0.082 0.190 0.086 0.088
Probit PMNLS 0.277 0.248 0.084 0.452 0.101 0.258

nT = 400

Multinomial QMLE 0.079 0.068 0.061 0.098 0.077 0.064
Copula MLE 0.153 0.057 0.059 0.161 0.065 0.059
Probit PMNLS 0.277 0.250 0.077 0.451 0.093 0.258

Note: RMSE across 500 simulations for each estimation procedure when
data are generated from a Gaussian copula with beta marginals.

The results from using Estimators 1 through 3 are given in Table 1 in the forms of root mean squared
errors (RMSE) from the true parameters. The analysis focuses on the conditional mean coefficients
β.6 As expected, given a correctly specified link function, the estimates remain consistent to the true
parameters, as evidenced by the declining RMSE at an expected rate. Both the multinomial QMLE
and copula estimators compete in terms of RMSE but it is not surprising that the copula estimator
tends to be slightly better, given that it is a correctly specified MLE. The probit estimator, on the
other hand, remains inconsistent, which is to be expected given the incorrect link. As observed by
Montoya-Blandón and Jacho-Chávez (2020), link misspecification can cause large biases even when
two relatively similar links such as the logit and probit are used in one specification. However, the
RMSE information hides an important point. We know from the theory in the previous section that
when unobserved heterogeneity is involved, the probit would not even identify the correct coefficients,
so its inconsistency for the true β0 is not surprising.

A more complete depiction is given in the following set of results, found in Table 2. This table
presents the mean coefficients and standard errors across the 500 Monte Carlo simulations. First, note
that once again the multinomial QMLE and copula MLE are quite close in their performance, both

6The results for the complete parameters are available upon request.

15



in terms of mean coefficients and standard errors. This is interesting given that the copula standard
errors rely on the correctly specified variance covariance matrix, while the multinomial QMLE uses
the fully robust formulas (see 10). Thus, as expected, the fact that the copula model estimates a
larger number of parameters likely diminishes the possible efficiency gains from correctly specifying
the distribution. Now, as mentioned before, while the probit PMNLS is not correctly capturing the
underlying conditional mean coefficients, it should provide the best probit link approximation to the
scaled coefficients. Since we know that both true unobserved heterogeneity variances equal 1, this will
mean that the probit will identify and consistently estimate β∗/

√
2. We note this value under the true

conditional mean coefficients in Table 2. As can be observed, the probit PMNLS approach is indeed
quite close to these values. The remaining bias is likely explained by the link misspecification and
small sample sizes. Still, this implies that the average partial effects recovered from using these scaled
coefficients will likely be close to the true effects, or at least as close as the marginal effects from a
multinomial and probit specification can be. As an example, the true average partial effect of xit1 on
yit1 evaluated at xit1 = xit2 = 0 using the multinomial logit link is 0.088. Averaging across the Monte
Carlo simulations, I find that this effect is estimated to be 0.084 on average from the multinomial logit
link, and 0.077 from the probit approximations, where both examples use the full 400 observations.

Table 2: Coefficients from a Multinomial Logit Link in a Gaussian Copula with Beta Marginals

Method β1,0 β1,1 β1,2 β2,0 β2,1 β2,2
nT = 200

Multinomial QMLE
−1.033 0.459 −0.021 −1.524 −0.020 0.462
(0.107) (0.084) (0.084) (0.118) (0.093) (0.094)

Copula MLE
−1.122 0.500 −0.022 −1.628 −0.013 0.494
(0.115) (0.074) (0.074) (0.124) (0.082) (0.082)

Probit PMNLS
−0.729 0.257 −0.071 −1.052 −0.088 0.247
(0.054) (0.046) (0.044) (0.056) (0.046) (0.050)

β0/
√
2 −0.707 0.354 0.000 −1.061 0.000 0.354

nT = 400

Multinomial QMLE
−1.027 0.444 −0.036 −1.555 −0.051 0.461
(0.073) (0.059) (0.059) (0.084) (0.067) (0.068)

Copula MLE
−1.113 0.495 −0.020 −1.627 −0.017 0.490
(0.083) (0.053) (0.052) (0.089) (0.058) (0.058)

Probit PMNLS
−0.726 0.252 −0.071 −1.051 −0.086 0.245
(0.038) (0.033) (0.031) (0.040) (0.033) (0.036)

β0/
√
2 −0.707 0.354 0.000 −1.061 0.000 0.354

Note: Average coefficients and standard errors across 500 simulations for each estima-
tion procedure when data are generated from a Gaussian copula with beta marginals.
Standard errors are in parenthesis. For multinomial QMLE and probit PMNLS these
are robust to distributional misspecification in each iteration.

3.2 Probit Data-Generating Process

To test an opposing situation to the one in the previous subsection, I now generate values from the
probit PMNLS model. To this end, I generate values of yitj , j = 1, 2 according to

yitj = Φ

(
x′
itj

βj√
2

)
+ ritj
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where ritj ∼ N (0, 0.01) is an additional error term that is independent across units, time and shares.
The variance is set low enough so that the multivariate fractions stay within the unit interval with
sufficiently large probability after generation. This generation scheme assumes the probit link has
already integrated out the underlying unobserved heterogeneity and so it generates directly from the
conditional mean of Yitj given xitj . All remaining values stay the same as in the previous scenario.
Using this data-generating process, the values for RMSE can be found in Table 3 and the coefficients
with associated standard errors in Table 4.

Table 3: RMSE for Coefficients from a Multivariate Nonlinear Least Squares with Probit Link

Method β1,0 β1,1 β1,2 β2,0 β2,1 β2,2
nT = 200

Multinomial QMLE 0.207 0.270 0.157 0.266 0.208 0.193
Copula MLE 0.501 0.224 0.138 0.444 0.199 0.140
Probit PMNLS 0.033 0.038 0.021 0.100 0.026 0.087

nT = 400

Multinomial QMLE 0.168 0.298 0.162 0.230 0.265 0.206
Copula MLE 0.504 0.217 0.130 0.442 0.193 0.130
Probit PMNLS 0.029 0.034 0.016 0.098 0.018 0.083

Note: RMSE across 500 simulations for each estimation procedure when
data are generated from a multivariate nonlinear least squares conditional
mean with additive error.

As expected, the situation has reversed in comparison to the previous scenario. In this setting, the
likelihood-based methods no longer remain consistent to the new true value of the parameters β0/

√
2.

Their RMSE is erratic and their coefficients remain biased regardless of the sample size. The standard
errors for all approaches are also lower than in the previous scenarios, likely due to the reduced variation
introduced by the ritj additive errors in comparison to that from the copula generating mechanism. On
the other hand, the probit estimator now appears to be consistent with RMSE decreasing with larger
sample size. The estimates remain much closer to the true value in comparison to before, reflecting
the correct specification assumption. Interestingly, using a similar example as before, it appears that
the probit link approximates the average partial effects much better even when misspecified. In the
previous example, the approximation was fairly close to the averaged estimates from the multinomial
QMLE APEs. This does not seem to occur in this reverse scenario. Now, the true average partial
effect of xit1 on yit1 evaluated at xit1 = xit2 = 0 using the probit link is 0.109. The average of the
estimated APEs from the correctly specified probit is 0.102, but the approximation by the multinomial
logit is 0.084, which remains essentially unchanged from the previous scenario. Thus, while it seems
that the probit link adapts quite well when it is misspecified, this does not seem to be the case for the
multinomial logit QMLE.

3.3 Censored Data-Generating Process

Finally, consider a scenario that takes into account the possibility of having corner solutions expressed
as structural zeros within the data:

y∗itj = x
′
itjβj + cij + εitj . (23)

This creates the need to adjust the values previously used for generation, as the underlying latent
variable model (23) tends to yield too many zeros if the linear index induces a lot of variance on
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Table 4: Coefficients from a Multivariate Nonlinear Least Squares with Probit Link

Method β1,0 β1,1 β1,2 β2,0 β2,1 β2,2
nT = 200

Multinomial QMLE
−0.907 0.619 0.149 −1.319 0.198 0.538
(0.047) (0.049) (0.048) (0.057) (0.057) (0.058)

Copula MLE
−1.199 0.569 0.128 −1.497 0.188 0.477
(0.081) (0.056) (0.055) (0.094) (0.063) (0.062)

Probit PMNLS
−0.683 0.323 0.000 −0.964 −0.004 0.272
(0.023) (0.023) (0.022) (0.026) (0.024) (0.028)

β0/
√
2 −0.707 0.354 0.000 −1.061 0.000 0.354

nT = 400

Multinomial QMLE
−0.868 0.635 0.126 −1.273 0.236 0.550
(0.033) (0.035) (0.034) (0.04) (0.041) (0.040)

Copula MLE
−1.209 0.568 0.124 −1.500 0.188 0.476
(0.056) (0.039) (0.038) (0.066) (0.044) (0.044)

Probit PMNLS
−0.682 0.324 −0.001 −0.964 −0.004 0.273
(0.016) (0.017) (0.015) (0.019) (0.017) (0.020)

β0/
√
2 −0.707 0.354 0.000 −1.061 0.000 0.354

Note: Average coefficients and standard errors across 500 simulations for each esti-
mation procedure when data are generated from a multivariate nonlinear least squares
conditional mean with additive error. Standard errors are in parenthesis. Maximum
likelihood methods use the fully robust standard errors.

Y ∗. Thus, I adjust the population values of the coefficients to β1 = (−0.2, 0.15,−0.2)′ and β2 =
(−0.15,−0.2, 0.15)′ and it is now assumed that the variances for both the unobserved heterogeneity and
the additive errors εitj are given by Γ = Σ with the diagonal components equal to 0.02 and covariance
0.01. Furthermore, the covariates are generated from normal distributions with mean equal to 3.5
and standard deviation equal to 0.25. Generating (y∗it1, y

∗
it2) and mapping to observable multivariate

fractions via (19) was found to produce approximately 20% censoring in the data. This large proportion
of zeros can be taken into account by using the Bayesian alternative given in Estimator 4.

For estimation purposes, given the conjugate priors outlined for the Bayesian estimator in Section
2.3, all that remains is to specify the hyperparameters of these distributions. I choose standard un-
informative priors for the coefficients by setting β0 = 0K×1, B0 = 1000IK , νΓ = νΣ = D + 1 and
RΓ = RΣ = ID. With these values, I executed the Gibbs sampling algorithm outlined in Estima-
tor 4 to find the posterior mean and median across from 5000 simulations after a burn-in period of
1000. The results for the mean of these Bayesian estimates across 500 Monte Carlo simulations can be
found in Table 5. The parameter values can be seen to be close to the appropriate starting values and
get better with a larger sample size. Furthermore, the standard errors, as measured by the standard
deviation across the simulation chains is seen to also decrease with sample size, as expected. These
simulations showcase the simplicity of dealing with censoring using a Bayesian perspective with a data
augmentation scheme.

Finally, Figures 1 and 2 give a graphical depiction of the posterior chains for the coefficients in
a single Monte Carlo draw. One of the major advantages of the Bayesian approach is its ability to
produce a complete distribution for each parameter of interest from which all proceeding information is
derived. As observed in the figures, the distribution of the coefficients centers around their true values
and most sampling steps are taken close to the median. Using the usual diagnostics, I also confirmed
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Table 5: Coefficients from a Bayesian Latent Dependent Variable Model

Estimate β1,0 β1,1 β1,2 β2,0 β2,1 β2,2
nT = 200

Mean −0.178 0.139 −0.191 −0.137 −0.222 0.175
Median −0.177 0.138 −0.190 −0.136 −0.221 0.174
Std. Dev. (0.058) (0.041) (0.046) (0.051) (0.04) (0.043)

nT = 400

Mean −0.197 0.141 −0.215 −0.121 −0.217 0.165
Median −0.194 0.140 −0.213 −0.120 −0.215 0.164
Std. Dev. (0.038) (0.029) (0.030) (0.035) (0.028) (0.029)

Note: Average posterior mean and medians across 500 simulations from a
latent dependent variable model. Standard errors are given as the standard
deviation of the chains.

that the chains satisfy the criteria for convergence to their stationary distribution.

4 Conclusion

Multivariate fractional outcomes can arise from many interesting applied economic problems. As the
literature has expanded to cover many interesting use of this data in statistics and econometrics, there
have not been many developments that are useful in a panel data context. This paper attempts to
fill that gap by introducing a wide range of methods for dealing with multivariate fractions in a way
that deals with the specific issues surrounding these limited dependent variables, while also remaining
flexible and robust enough to be widely applicable. First, a general maximum likelihood estimator that
allows for correlated random effects was introduced, and noted that it remains robust to distributional
misspecification. A second approach, and perhaps the one that will be most useful, is a multivariate
nonlinear least squares estimator with a probit link that allows for identification of average partial effects
and can incorporate endogeneity, arguably some of the most interesting challenges in any particular
application. A final approach that allows for directly incorporating the zeros and accounting for this
censoring was presented. In line with the literature of limited dependent variable models, a Bayesian
solution is found to be flexible and computationally feasible comparative to other simulation-based
alternatives.

As avenues for future research, it would be interesting to push the limits of these methods, par-
ticularly for applications with many shares, such as budget share allocations across many goods. Fur-
thermore, it would be interesting to take these method to richer data sets that would allow to explore
additional possibilities for estimation and inference, while providing important answers to problems
where multivariate fractional outcomes can arise.
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Figure 1: Trace Plot of Coefficients for Latent Dependent Variable Model
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Figure 2: Density Plot of Coefficients for Latent Dependent Variable Model
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A Details on Integration Methods for MLE

The integrals given by the conditionally independent (7) and pooled (8) likelihoods can be cast in
a general way as the problem of numerically evaluating the following integral for some function f :
RD × Rp → R:

V ≡
∫ ∞

−∞
· · ·
∫ ∞

−∞
f(c, z)ϕD(c;0D×1,Γ) dc , (24)

24



where z ∈ Rp represents other possible arguments to the function. From Liu and Pierce (1994), recall
that the Gauss-Hermite quadrature allows one to evaluate the one-dimensional integral∫ ∞

−∞
g(c, z) exp

(
−c2

)
dc ≈

S∑
s=1

wsg(as, z) , (25)

where g : R×Rp → R, the abscissas as denote the zeros of the S-th order Hermite polynomial and ws

are their corresponding weights.

A.1 Adaptive Quadrature

The adaptive approach to evaluate the multidimensional integral in (24) begins by transforming the
integrand as ∫ ∞

−∞
· · ·
∫ ∞

−∞

[
f(c, z)ϕD(c;0D×1,Γ)

ϕD(c;ω,Q)

]
ϕD(c;ω,Q) dc ,

By a substitution u = (2Q)−1/2(c− ω), this integral becomes∫ ∞

−∞
· · ·
∫ ∞

−∞
2

D
2 |Q|

1
2 exp

(
u′u

)
f(c(u), z)ϕD(c(u);0D×1,Γ) exp

(
−u′u

)
du ,

where c(u) = ω+
√
2Q1/2u, Q1/2 is the matrix resulting from a Cholesky decomposition of Q and |Q|

is the determinant of Q. Defining the function h(c) = log f(c, z) + log ϕD(c;0D×1,Γ), the adaptive
approach estimates ω and Q as the mode and curvature at the mode, respectively, of h(c); i.e.,

ω̂ = argmax
c

h(c) ,

Q̂ =
∂2h(c)

∂c∂c′

∣∣∣∣
c=ω̂

.

Given that f(·) is taken to be a (potentially misspecified) distribution for the multivariate fractions Y ,
then ω̂ can be interpreted as the posterior mode of c using likelihood f and a Gaussian prior centered
at 0. As noted by Liu and Pierce (1994), these estimators ensure that the log of the chosen Gaussian
density has the same scores and Hessian as f(c, z)ϕD(c;0D×1,Γ). It is in this sense that this method
is adaptive to the specific integrand.

Let as = (as1 , . . . , asD) and compute a∗s = ω̂ +
√
2Q̂(1/2)as. As exp(−u′u) = exp

(
−u21

)
× · · · ×

exp
(
−u2D

)
, we can apply the univariate Gauss-Hermite quadrature process D times to solve the mul-

tivariate integral yielding

Vadaptive ≈ 2
D
2 |Q̂|

1
2

S∑
s1=1

· · ·
S∑

sD=1

D∏
j=1

wsj exp
(
a′sas

)
f(a∗s, z)ϕD(a

∗
s;0D×1,Γ) (26)

A.2 Nonadaptive Quadrature

This method operates by noting that, since we are already starting from a function times a Gaussian
density in (24), we only need to deal with the correlation between unobserved heterogeneity values
before using Gauss-Hermite quadrature in each dimension. While there is no generally best way of
incorporating this correlation structure into the Gauss-Hermite procedure, Jäckel (2005) describes one
of the most numerically robust methods as follows. Using a singular value decomposition, find U and
Λ such that of Γ = UΛU ′. By a similar substitution to before, define u = R′(2Λ)−1/2U ′c, where R
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is the resulting matrix from multiplying together (D− 1) planar rotation matrices of 45◦ degrees each.
Then, (24) becomes ∫ ∞

−∞
· · ·
∫ ∞

−∞
π−D

2 f(c(u), z) exp
(
−u′u

)
du ,

with c(u) =
√
2UΛ1/2Ru. This time, compute a∗s =

√
2UΛ1/2Ras. Thus, the desired approximation

is given by

Vnonadaptive ≈ π−D
2

S∑
s1=1

· · ·
S∑

sD=1

D∏
j=1

wsjf(a
∗
s, z) . (27)

A.3 Pruning

One final issue that is of interest for the computation of both (26) and (27) is the use of pruning. Since
some of the evaluation points will be given very small weights that might not contribute much to the
value of the integral, one can set these to 0 and decrease the amount of function evaluations needed
without sacrificing much precision. As the individual weights are always multiplied together for any
approximation, set ws =

∏D
j=1wsj . Given a threshold τS , the idea of pruning is to use weights

w∗
s = wsI(ws > τS) ,

in each evaluation. While τS can be chosen to be any arbitrary constant designed to reduce computa-
tional intensity without sacrificing numerical precision, Jäckel (2005) recommends using

τS = min
s

{ws}D−1 ·max
s

{ws} .

This is the value that I use throughout the paper for all integral evaluations.

B Derivatives for MLE and Probit Estimators

B.1 Scores for Independent and Pooled MLE

Starting from (7) or (8), replace the multinomial logit link (12) into F (Yit|Xit, ci;β) and take logs to
obtain

logF (Yit|Xit, ci;β) =
d∑

j=1

ytij

x′
itjβj + cij − log

1 +
D∑
p=1

exp
(
x′
itpβp + cip

) .

Differentiating this equation with respect to some βk yields the usual multinomial score

∂ logF (Yit|Xit, ci;β)

∂βk
=

d∑
j=1

ytij [I(j = k)−mitk]xitk ,

= (yitk −mitk)xitk ,

where the last step follows from Yit ∈ Sd. We now have the derivative that would apply to the logarithm
of the integrand. Exchanging differentiation and integration, we then have

∂ℓ
(ind)
i (β,Γ)

∂βk
= L

(ind)
i (β,Γ)

∫ ∞

−∞
· · ·
∫ ∞

−∞

{ Ti∏
t=1

d∏
j=1

m
yijt
ijt

[ Ti∑
t=1

(yitk −mitk)xitk

]

× ϕD(ci;0D×1,Γ)

}
dci ,

(28)

26



for the likelihood assuming conditional independence and

∂ℓ
(pool)
i (β,Γ)

∂Γ
=

Ti∑
t=1

L
(pool)
it (β,Γ)

∫ ∞

−∞
· · ·
∫ ∞

−∞

{ d∏
j=1

m
yijt
ijt

 (yitk −mitk)xitk

× ϕD(ci;0D×1,Γ)

}
dci ,

(29)

for the pooled likelihood. The terms L
(ind)
i (β,Γ) and L

(pool)
it (β,Γ) represent the likelihood before taking

logarithms; i.e., the complete integrals. Stacking across all k = 1, . . . , D yields the total score. The
scores for Γ are similar and rely on the score for the normal distribution and the matrix derivatives of
Γ. They are given as

∂ℓ
(ind)
i (β,Γ)

∂Γ
= L

(ind)
i (β,Γ)

∫ ∞

−∞
· · ·
∫ ∞

−∞

{ Ti∏
t=1

d∏
j=1

m
yijt
ijt

Γ−1(ID − cic′iΓ−1)

× ϕD(ci;0D×1,Γ)

}
dci ,

(30)

for the likelihood assuming conditional independence and

∂ℓ
(pool)
i (β,Γ)

∂βk
=

Ti∑
t=1

L
(pool)
it (β,Γ)

∫ ∞

−∞
· · ·
∫ ∞

−∞

{ d∏
j=1

m
yijt
ijt

Γ−1(ID − cic′iΓ−1)

× ϕD(ci;0D×1,Γ)

}
dci ,

(31)

for the pooled likelihood.

B.2 Score and Hessian for Probit NLS

Starting from the objective function (15), we see that it can be written as a summation across both t
and j, such that

qi(αc) =
1

2

Ti∑
t=1

D∑
j=1

[yitj − Φ(x̃′
itjαjc)]

2 .

Taking the derivative with respect to some αkc yields

∂qi(αc)

∂αkc
= −

Ti∑
t=1

ϕ(x̃′
itkαkc)[yitk − Φ(x̃′

itkαkc)]x̃itk .

Stacking across k = 1, . . . , D gives the score as

∂qi(αc)

∂αc
= −

Ti∑
t=1

 ϕ(x̃′
it1α1c)[yit1 − Φ(x̃′

it1α1c)]x̃it1
...

ϕ(x̃′
itDαDc)[yitD − Φ(x̃′

itDαDc)]x̃itD

 . (32)

Note that each element depends only on its respective coefficient and so ∂2qi(αc)
/
∂αkc∂αjc = 0 for

j ̸= k. This then implies that the Hessian will be a diagonal matrix. Taking another derivative with
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respect to some αkc and using dϕ(z)/dz = −zϕ(z) for any z ∈ R, we have that each diagonal term
will be of the form

∂2qi(αc)

∂αkc∂αkc
=

Ti∑
t=1

ϕ(x̃′
itkαkc){ϕ(x̃′

itkαkc) + x̃
′
itkαkc[yitk − Φ(x̃′

itkαkc)]}x̃itkx̃
′
itk , (33)

for all k = 1, . . . , D.
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