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Abstract

This paper provides a novel approach to identification and estimation of a network formation model using

observed network data, where the model acknowledges possible externalities in agents’ utilities of forming

connections with one another. The existence of externalities induces an issue of multiple equilibria. We first

show that local point identification of the parameters of interest is possible under a mild assumption on the

equilibrium selection process. We then propose a Bayesian estimation method to conduct statistical infer-

ence of structural payoff coefficients. Implementing the resulting MCMC algorithm requires sampling from

the generalized inverse normal distribution, for which we found no sampling algorithms in the literature. A

secondary contribution of this paper is to provide provably efficient sampling algorithms for the generalized

inverse normal distribution and its truncated variants. Our method also allows us to estimate equilibrium

selection probabilities, which requires knowledge on possible equilibrium configurations. We address this issue

by proposing a composite likelihood function based on subgraphs of the observed network. We show that the

use of a composite likelihood induces misspecification, characterize the Kullback-Leibler divergence that mea-

sures this misspecification error and show this measure can be used to tune the composite likelihood weights.

We present an empirical application to the formation process of social connections between individuals in

villages in Karnataka, India and find strong evidence of homophily effects but small externality effects.
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1 Introduction

Social networks are critical to determining how individuals make choices in contexts ranging from labor markets

and educational achievement to substance abuse and criminality (Gaviria and Raphael, 2001; Sacerdote, 2001;

Bayer et al., 2009; Mas and Moretti, 2009). As network structures arise from individual strategic interaction,

it becomes important to understand the underlying network formation process when studying the effects of

these structures using observational data (see, e.g., Goldsmith-Pinkham and Imbens, 2013; Johnsson and Moon,

2021). The main contribution of this article is to propose a method to point identify and estimate strategic

network formation models using observational data on network links. Our paper contributes to this literature by

providing, to the best of our knowledge, the first results on point identification of both preference and selection

mechanism parameters.

We then propose a Bayesian method to estimate the structural parameters of preferences and equilibrium

selection probabilities that characterize the network formation model. We interpret observed networks as the

equilibrium outcome of a complete information game where individuals make connections based on a flexible

payoff function that allows for externalities in the utility received from links elsewhere in the network (Pelican

and Graham, 2020). In addition, we offer a method to conduct statistical inference on the utility function’s

parameters that do not rely on asymptotic approximations. This contribution is particularly relevant because

our estimation method allows for inference of not only the homophily parameter but also the degree heterogeneity

and the payoff externality parameters. The problem of providing asymptotic theory for the degree heterogeneity

parameters has proved to be complex because the vector of parameters grows with the sample size (Neyman and

Scott, 1948). Moreover, inference for the payoff externality parameters is not standard, given the possibility of

multiple equilibria (Pelican and Graham, 2020).

Allowing for strategic externalities is appealing since it provides a rich model that matches documented

features of social networks found in the data, such as clustering and homophily (Jackson and Rogers, 2007;

Jackson et al., 2012; Sheng, 2020). However, strategic network formation models with utility externalities

are plagued with identification and estimation issues. These outstanding problems include multiple equilibria,

statistical dependence in large networks, and the curse of dimensionality (Leung, 2015; De Paula et al., 2018).

Differing from previous research proposing methods that resolve some problems but not all, this paper provides

a technique that simultaneously addresses all these fundamental issues.

We deal with the problem of multiple equilibria by specifying both a payoff function and an equilibrium

selection mechanism as the primitives of the network formation model. The selection mechanism determines the

probability distribution over possible equilibria for a given realization of exogenous characteristics, individual

heterogeneity, and idiosyncratic dyadic shocks. As in Bajari et al. (2010), we take an empirical approach to
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characterize the equilibrium selection. Critically, we assume the existence of a predetermined and potentially

unknown probability distribution over all possible equilibrium outcomes. We interpret the probability distribu-

tion as nature assigning di�erent likelihoods of occurrence to di�erent network structures. We show that this

assumption is enough to guarantee local point identi�cation of the structural parameters underlying both utility

functions and equilibrium selection probabilities. Our approach di�ers from previous studies of discrete games

of complete information with multiple equilibria such as Bajari et al. (2010) and Bajari et al. (2011) due to

the added complexity in the strategy space for the game we consider. This complexity makes it intractable to

compute all possible equilibria of the game. Therefore, instead of de�ning a selection mechanism in the space

of individuals' strategies, this paper focuses on selecting network structures that are the game's equilibrium

outcomes. One advantage of directly selecting outcomes is that selection of equilibrium networks can result from

both pure and mixed strategies (Pelican and Graham, 2020).

To study identi�cation, we introduce assumptions on equilibrium selection based on the idea ofmultiplicity

regions. We de�ne a multiplicity region as a subset of the support of idiosyncratic dyadic shocks where the

group of all equilibrium networks is the same for any value of the shocks belonging to that region. We show

that the total likelihood of observing an equilibrium network can be written as a weighted sum of integrated

likelihoods across all possible multiplicity regions. Though critical for showing that the model's parameters are

point identi�ed, the formalization in terms of multiplicity regions does not solve the curse of dimensionality

problem inherent to the estimation process. This is due to the dimensionality of the idiosyncratic shocks, which

result in a likelihood that is computationally intractable, even when using simulation-based methods (McFadden,

1989; Hajivassiliou and McFadden, 1998).

To overcome this issue, we resort to a Bayesian estimation method. Following a data augmentation approach,

we introduce a transformation of idiosyncratic shocks as latent variables to be sampled along with the necessary

preference parameters. This idea forms the basis of many computationally e�cient algorithms for estimating

models where numerical integration is unfeasible, such as discrete choice models with large choice sets (Albert

and Chib, 1993; McCulloch et al., 2000). The backbone of our approach is the fact that, conditional on parameter

values, a transformation of the idiosyncratic shocks fully determines admissible equilibrium con�gurations. We

show that once we condition on the transformed values of shocks, only the structure of the externality function

remains relevant in determining the distribution of equilibrium networks. Our algorithm alternates between

sampling from the utility parameters conditional on transformed shocks and the distribution of shocks given

parameters and network data.

We highlight three relevant advantages of using a Bayesian estimation method instead of the standard fre-

quentest approach common in the literature. First, the Bayesian approach allows us to sidestep the issue of

high-dimensional numerical integration in order to evaluate the likelihood. Second, we can address the potential
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issue of statistical dependence in large networks. The key idea is that, as our estimation method conditions on

the current network and does not rely on asymptotic approximations to conduct inference, the distinction be-

tween large-games and many-games asymptotics becomes less relevant. Notably, the 
exibility in our estimation

method can accommodate both large-networks and many-networks data structures, while at the same time gen-

erating posterior distributions for the equilibrium selection probabilities, which allows the researcher to simulate

the model and perform counterfactual analysis. Finally, the use of random coe�cients to perform estimation on

the two-way individual heterogeneity components allows to conduct statistical inference while avoiding the issue

of asymptotic bias caused by the presence of incidental parameters (Jochmans, 2018; Dzemski, 2019; Yan et al.,

2019). The advantage of using the random e�ects approach can also be extended to longitudinal panel data

models as in Fern�andez-Val and Weidner (2016), where the incidental parameter issue also causes non-standard

asymptotic biases.

Implementing our approach requires sampling from the generalized inverse normal (GIN ) distribution pro-

posed by Robert (1991). This distribution is conjugate to our likelihood function; assigning a generalized inverse

normal prior to (the reciprocal of) the externality coe�cient results in a posterior that is also generalized inverse

normal. The GIN distribution can also arise in a simultaneous equation framework with a network structure

(Masten, 2014). To the best of our knowledge, there is no e�cient algorithm for sampling from the generalized

inverse normal distribution in the literature. An additional contribution of our paper is providing such an e�cient

algorithm that is then used in our Gibbs sampling procedure. To this end, we borrow the tools that constitute

the foundation of e�cient sampling algorithms for a large class of distributions. For example, these tools have

been used successfully to design e�cient samplers for the generalized inverse Gaussian distribution, which shares

a similar-shaped kernel with the GIN distribution (H•ormann and Leydold, 2014). 1 We provide formal guaran-

tee's for our proposed algorithm's e�ciency in sampling from the generalized inverse normal distribution and

its variants truncated to either the negative or positive reals (Kinderman and Monahan, 1977; Leydold, 2001;

H•ormann and Leydold, 2014).

Although our Bayesian estimation approach addresses the computational tractability caused by the dimen-

sionality of the idiosyncratic shocks, the multiplicity of equilibrium outcomes creates two additional issues. The

�rst is in sampling shocks, as the normalizing constant in their posterior distribution remains di�cult to cal-

culate. This is because computing the normalizing constant is equivalent to obtaining the set of equilibria for

a given con�guration of shocks, which is computationally infeasible. The second issue arises when sampling

equilibrium selection probabilities, as the space of network con�gurations is high-dimensional, and �nding two

isomorphic networks becomes impractical.

1Both distributions arise as di�erent ways to generalize the distribution of the reciprocal of a normally distributed random
variable.
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To tackle both issues, on top of taking a Bayesian estimation approach, we propose a composite likelihood

objective function formed by multiplying the marginal distributions of NK subgraphs forming the complete

network d (Graham, 2020). We show that the correct speci�cation of the subgraph marginal distributions in this

context is not guaranteed. The misspeci�cation issues means we cannot apply the classic consistency results in

Cox and Reid (2004) for estimators based on composite likelihoods. As a �rst step, we characterize the Kullback-

Leibler divergence that measures the misspeci�cation error from using subnetworks that have lower connectivity

than the full network. We then show that it is possible to control this misspeci�cation error by choosing the

composite likelihood weights for each subnetwork such that those with lower external connectivity have a larger

weight than those with higher connectivity. Furthermore, using subgraphs allows us to completely characterize

the set of equilibria for any given con�guration of shocks, making the problem of sampling from the posterior

distribution of shocks tractable. Finally, to make our estimator scalable to networks with many agents requires

choo

To highlight the usability of our approach, we present an empirical application using data from the Social

Networks and Micro�nance project, which contains the publicly available data of participation in a program of

Bharatha Swamukti Samsthe (BSS), a micro�nance institution (MFI) in rural southern Karnataka (Banerjee

et al., 2013). Crucially, the data include information of thirteen possible relationships among individuals, includ-

ing visiting each other, praying, borrowing and lending money and goods, obtaining advice, and giving advice.

We combine the di�erent social ties into one unique social network encompassing the thirteen dimensions. Based

on the constructed social network, we model the network formation process and estimate the payo� parameters

of interest. We �nd strong evidence of homophily for most of the characteristics in our analysis. The most

substantial homophily e�ects happen among the same gender and working status of villagers.

The structure of the paper is as follows. Section 2 introduces the network formation model, our population

assumptions, and the main identi�cation result. Section 3 presents the Bayesian algorithm, and introduces the

idea of the composite likelihood function. Section 4 presents the data and empirical results. Finally, section 5

concludes.

2 Network Formation Model and Identi�cation

2.1 Network Formation

Following Pelican and Graham (2020) and Sheng (2020), we assume that any observed network structures are

the result of a network formation model where a set ofN individuals, represented byI N = f 1; 2; : : : ; N g, choose

connections simultaneously in what is known as a link announcement game. Each individuali is characterized
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by a K -dimensional vector of observed attributes X i and unobserved (to the researcher) degree e�ectsA i .

Further, each dyad composed from playersi and j (with i 6= j) faces a pair of shocks (~Uij ; ~Uji ) that a�ect their

connection decisions. The collection of all these objects is given byA = ( A1; : : : ; AN ), X = ( X 1; : : : ; X N ),

and ~U = ( ~U12; : : : ; ~U1N ; : : : ; ~UN;N � 1). Let d 2 DN be a realization of a network con�guration from the set

DN of all possible N -player adjacency matrices. We assume payo� functions that allow for players to have

preferences over other individuals' positions in the network. In particular, we assume that individuals have

additively separable utility functions divided into three components: degree heterogeneity, assortative matching

(also known as homophily) and an externality component that can generate multiple equilibria. In de�ning our

payo� function, for notational convenience, we do not explicitly include A i and X i as arguments. Individual's

utility from the network con�guration is determined by

� i

�
d; ~Uij

�
=

X

j

dij

h
A i + A j + � 0

0Wij + 
 0sij (d) � ~Uij

i
; i = 1 ; : : : ; N (1)

where Wij;l = jX i;l � X j;l j for l = 1 ; : : : ; p. The full network d appears on the right hand side of (1) to

re
ect the fact that individual i 's utility can be potentially a�ected by other individuals' links in the network.

The utility function depends on two individual degree-heterogeneity componentsA i and A j , a dyadic unobserved

component ~Uij , a homophily component� 0
0Wij , and preferences over links other thandij given by the externality

function sij (d) : DN ! S . This externality function can include relevant cases in the literature such as taste

for reciprocated links in directed networks (Pelican and Graham, 2020), and taste for indirect connections

and completing triangles in undirected networks (Mele, 2017; Christakis et al., 2020; Sheng, 2020). Similar to

Pelican and Graham (2020), a key element of this model is the fact thatsij (d) is discrete-valued, such that

S = f s0; : : : ; sL g and jSj = L + 1.

As pointed out by Pelican and Graham (2020), choosing an equilibrium selection concept is closely related

with the assumption on the directed or undirected nature of individuals' links. Games on directed networks are

associated with the Nash equilibrium solution concept, while in the analysis of undirected networks, pairwise

stability as equilibrium concept plays a fundamental role (Jackson and Wolinsky, 1996). To accommodate the

structure of our empirical application, we assume that individuals form undirected connections. In Appendix B,

we show that this assumption is not necessary for our identi�cation and estimation results, as they also apply

to a game where individuals can form directed links under a Nash equilibrium solution concept. Thus, following

the literature on undirected network formation games, we use pairwise stability under transferable utility as our

equilibrium concept.2 Individuals i and j decide whether or not to form a connection based on their marginal

2Our initial approach considered non-transferable utility as transferable utility can seem restrictive in this setup. The impli-
cations of non-transferable utility can be incorporated in our Bayesian estimation scheme increase at the cost of computational
complexity without adding much 
exibility nor changing results considerably. Thus, we maintain the transferable utility assumption
for simplicity.
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utilities. From the payo� function (1), it follows that the marginal utility individual i receives from linking to j

is

� � ij

�
d; ~Uij

�
= A i + A j + � 0

0Wij + 
 0sij (d) � ~Uij ; i = 1 ; : : : ; N ; j = 1 ; : : : ; N ; i 6= j ; (2)

Finally, de�ne �� � ij (d; ~Uij ; ~Uji ) = [� � ij

�
d; ~Uij

�
+ � � ji

�
d; ~Uji

�
]=2. Using the de�nition of marginal utility in

equation (2), we can now introduce the de�nition of pairwise stability. We then discuss the existence of a pairwise

stable network under the utility function that we introduce in equation (1).

De�nition 1 (Pairwise Stability) . A network d is pairwise stable under transferable utility if for any two

individuals i and j , we have

(i) dij = dji = 1 when �� � ij (d; ~Uij ; ~Uji ) � 0;

(ii) dij = dji = 0 when �� � ij (d; ~Uij ; ~Uji ) < 0.

Equilibrium. We assume a game of complete information. Each individuali observesf A i ; X 0
i g

N
i =1 and

f ~Uij gi 6= j , then decides a set of links from theN � 1 agents. Then, a link is formed if both individuals perceive

a positive marginal utility from the connection. Sheng (2020) shows that under transferable utility, assuming

that the links are strategic complements, the model can be casted into a supermodular game in which the the

existence of an equilibrium follows from the �xed-point theorem for isotone mappings (Topkis, 1979; Milgrom

and Roberts, 1990). Therefore, assuming that
 0 � 0 in our payo� function guarantees a non-empty set of

pairwise stable networks fromDN .

Note that under our de�nitions, link decisions are given as any solution to the simultaneous system of non-

linear equations given by

dij = dji = I

"

A i + A j + � 0
0Wij + 
 0

sij (d) + sji (d)
2

�
~Uij + ~Uji

2
� 0

#

; i = 1 ; : : : ; N ; j = 1 ; : : : ; i � 1

The externality functions considered in the literature are also symmetric as they satisfysij (d) = sji (d) for all

dyads ij and a given symmetric network d. De�ning Uij � ( ~Uij + ~Uji )=2, we see that the system reduces to

dij = dji = I [A i + A j + � 0
0Wij + 
 0sij (d) � Uij ] ; i = 1 ; : : : ; N ; j = 1 ; : : : ; i � 1 (3)

Equation (3) shows that the uncertainty in linking decisions comes solely through the average of dyad-level

shocksUij , given the transferibilty assumption (a similar solution appears in Hsieh et al., 2022).
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2.2 Population Assumptions

We assume that the population is formed by an arbitrarily large set of individuals I N . As argued by Goldsmith-

Pinkham and Imbens (2013), the ability to identify the statistical properties of the network rests on the assump-

tions on the individuals' dependence in the population given the network structure. Two standard assumptions

have been used in the econometrics literature of network formation games. The more straightforward but less

realistic case assumes a large number of exchangeable networks. This assumption is consistent with a large pop-

ulation that can be divided into independent networks that are mutually disjoint. A more realistic alternative

is to assume a large network de�ned on the set of nodesI N . As argued by Leung (2015), the issue with this

approach is that the researcher has to impose conditions on the network dependence between individuals to be

able to use asymptotic approximations to conduct inference.

One of our Bayesian estimation method's key advantages is that we do not require an asymptotic approx-

imation to conduct inference. Therefore, our approach can accommodate both of the mentioned population

assumptions. However, we need to observe repeated networks to identify the parameters of the equilibrium

selection mechanism. The identi�cation argument applies directly to the repeated networks population assump-

tion. In the large networks population assumption case, we have to impose the additional restriction that the

analyst can partition the large network into approximately independent sub-networks, see, e.g., Schweinberger

and Handcock (2015) and Sheng (2020). It is then possible to estimate selection probabilities when multiple

equilibria are present with repeated sub-network sequences.

2.3 Identi�cation

The network externality component sij (d) in our network formation game induces the potential for multiple

equilibria. To specify a likelihood function for this problem, we need to incorporate a way to assign probabilities

to di�erent equilibrium outcomes in the set of all possible equilibria. To that end, we de�ne N (d; u; � ) :

DN � RN (N � 1)=2 ! [0; 1] to be a function that assigns probabilities to the set of equilibrium networks, where

� = [ � 0; 
 ]0 is the vector of payo� parameters. We call this function N (d; u; � ) the equilibrium selection function.3

The set of networks in equilibrium can include both outcomes that result from individuals playing mixed strategies

or playing pure strategies. With this de�nition, the likelihood of observing a network d is given by

P(d; � ) =
Z

u 2 RN ( N � 1)
N (d; u; � )

NY

i =1

Y

j 6= i

f U (uij ) du : (4)

For identi�cation, we do not need to specify any particular probability distribution for f U . A common practice

3For convenience, we do not make explicit that the equilibrium selection distribution also depends on covariates X and degree
heterogeneity e�ects A .
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in the econometrics of games for incomplete models is to partition the errors' space into di�erent subspaces that

determine the potential number of equilibria conditional on given values of the regressors and the parameters

of the model (De Paula, 2013). Characterizing these regions in our context is relevant because it allows us to

express the likelihood of observing any given outcome as a sum of the probability mass in the areas where the

outcome can happen weighted by the relative probability of the outcome in those regions. We call the areas

partitioning the errors' space the multiplicity regions . In this paper, the de�nition of multiplicity regions requires

conditioning on the values of regressorsX , degree heterogeneityA and parameters� .

De�nition 2 (Multiplicity Region) . Conditional on values of X , A , and � , a multiplicity region m 2 M in the

space ofU is a region where the set of all possible equilibrium networks is the same for allu 2 m. That is,

N (d; u; � ) = N (d; u0; � ) for any d 2 DN and u; u0 2 m. Furthermore, multiplicity regions partition the space of

U ; i.e., for m; s 2 M , m \ s = ? (regions are disjoint) and
S

m 2 M m = RN (N � 1) .

A simple example can clarify the role of multiplicity regions in determining the observed networkd.

Example 1 (Multiplicity Regions) . Consider the simple case whenA i = 0 for all i and � 0 = 0 . Moreover,

assume that externalities are given by intransitive triads,sij (d) = dik dkj for all i , for 
 � 0. Finally, assume

N = 3 . In this scenario there are only eight possible network con�gurations given by

d1 =

2

6
6
6
6
4

0 0 0

0 0 0

0 0 0

3

7
7
7
7
5

; d2 =

2

6
6
6
6
4

0 1 0

1 0 0

0 0 0

3

7
7
7
7
5

; d3 =

2

6
6
6
6
4

0 0 1

0 0 0

1 0 0

3

7
7
7
7
5

; d4 =

2

6
6
6
6
4

0 0 0

0 0 1

0 1 0

3

7
7
7
7
5

; d5 =

2

6
6
6
6
4

0 1 0

1 0 1

0 1 0

3

7
7
7
7
5

;

d6 =

2

6
6
6
6
4

0 1 1

1 0 0

1 0 0

3

7
7
7
7
5

; d7 =

2

6
6
6
6
4

0 0 1

0 0 1

1 1 0

3

7
7
7
7
5

; and d8 =

2

6
6
6
6
4

0 1 1

1 0 1

1 1 0

3

7
7
7
7
5

:

Determining what network con�guration would emerge and whether or not it is unique, depends on the re-

alizations of the errors and the values of the parameters. In this example the space of the vector of shocks

u = ( u12; u21; u13; u31; u23; u32) can be divided into the following partition that completely determine the admis-

sible equilibrium networks given the externality parameter
 :

(�1 ; 0]
| {z }

I 1

[ (0; 
 ]
| {z }

I 2

[ (
; 1 )
| {z }

I 3

: (5)

Table 1 presents all the possible equilibrium networks given thatu13; u31 2 I 1 and u23; u32 2 I 2. Each row

represents a realization of the errors such that each dyad shock falls into one of the three possible multiplicity
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Table 1: Possible Equilibrium Networks in a Simple 2x2 Example

(u12; u21) d1 d2 d3 d4 d5 d6 d7 d8

I 1; I 1 0 0 0 0 0 0 0 1
I 1; I 2 0 0 1 0 0 0 0 1
I 1; I 3 0 0 1 0 0 0 0 0
I 2; I 1 0 0 1 0 0 0 0 1
I 2; I 2 0 0 1 0 0 0 0 1
I 2; I 3 0 0 1 0 0 0 0 0
I 3; I 1 0 0 1 0 0 0 0 0
I 3; I 2 0 0 1 0 0 0 0 0
I 3; I 3 0 0 1 0 0 0 0 0

Note: table with all the possible multiplicity regions for an example with intransitive triads externalities.
Each row represents a possible combination of realized shocks that follow in one of three possible
buckets as described in equation (5). Each column represents the network structures that are possible
equilibria. Position i; j in the table equals one if the network con�guration j is a possible equilibrium
in the multiplicity region i , and zero otherwise.

regions. Intuitively, if the shocks are too small (bothu12 and u21 fall into I 1), then it is always pro�table for

individuals to form connections, and the only equilibrium network isd4. The same intuition holds for large

values of the shocks where the only possible equilibrium con�guration is the empty network. When both shocks

fall into intermediate values (I 2), multiple equilibria arises, both the empty and the complete network are possible

outcomes.

The primary identi�cation idea is to separate the likelihood of the problem into all possible multiplicity

regions and evaluate whether it is possible to identify the parameters of interest for each of those regions.

Identi�cation in this context is in terms of observational equivalence; i.e., the distribution of the data at the

true parameter is di�erent from that at any other possible parameter value. To motivate our assumption, we

introduce the following proposition summarizing a similar discussion in section 2.2 of Pelican and Graham (2020).

The proposition relies on the following quantity, which, conditional on parameter values, completely determines

whether any given network is an equilibrium or not. De�ne t ij , for all dyads ij as

t ij �
uij � A i � A j � W 0

ij �



(6)

Proposition 1 (Best response characterization). Recall that S = f s0; : : : ; sL g. Then, for any d 2 DN , for all

i = 1 ; : : : ; N and j < i ,

(i) If t ij � s0, then dij = 1 ,

(ii) If t ij > s L , then dij = 0 ,

(iii) If sl < t ij � sl +1 , then dij = 0 when sij (d) � sl and dij = 1 when sij (d) > s l .

10



Although the proposition relies on 
 > 0, we can re-de�net ij to equal only the numerator of (6) in case
 = 0,

to obtain a similar expression.4 Let t collect all t ij across dyads. We impose an assumption on the equilibrium

selection in terms of multiplicity regions that is su�cient to point-identify utility function parameters and

selection probabilities from observational data on links.

Assumption 1 (Equilibrium Selection Characterization) . (i ) There exist a probability distribution over the set

of all possible networksDN denoted by h. (ii ) For every d 2 DN and t 2 RN (N � 1)=2, the distribution only

depends ond, which we denote byh(d).

The critical part of Assumption 1 is the fact that the weights are independent of the speci�c con�gurations t .

It is important to clarify that this does not imply that equilibrium networks are independent of shocks conditional

on parameters. Instead, Assumption 1 states that this dependence occurs only through the set of admissible

D(t ). With the characterization given in Proposition 1 and following Assumption 1, we can write

N (d; u; �; h ) =
h(d)

P
w 2 DN

h(w)g(w; u; � )
g(d; u; � );

where the function g(d; u; � ) takes the form

g(d; u; � ) =
NY

i =1

Y

j<i

I
�
A i + A j + W 0

ij � + 
s ij (d) � uij
� dij � I

�
A i + A j + W 0

ij � + 
s ij (d) < u ij
� 1� dij : (7)

As N is an equilibrium selection function, it should only assign weight to pairwise-stable equilibria. The function

g is essentially an indicator that takes the value of 1 whend is an equilibrium network given the vector of shocks

u preference parameters� and 0 otherwise. By Proposition 1, it only depends on the transformedu de�ning the

vector t . We can re-write the denominator in the expression forN as

X

w 2 DN

h(w)g(w; u; � ) =
X

w 2 D(t )

h(w);

where D(t ) is the set of all equilibria that are compatible with t . By de�nition, D(t ) = D(t 0) if t ; t 0 2 m, so

that we can focus only onDm , the set of all possible equilibrium networks within an arbitrary multiplicity region

m 2 M . Then, from the de�nition of conditional probability, the true equilibrium selection distribution (and

thus the likelihood function conditional on U = u) is such that

P(dju; � 0; h0) = N (d; u; � 0; h0) =
X

m 2 M

h0(d)
P

d02 Dm
h0(d0)

I f u 2 mgg(d; u; � 0): (8)

4 In this case, we would set s0 = sL = 0. We see that this implies there is only one equilibrium network, as expected. We analyze
the case of 
 0 = 0 in Section 3.
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Therefore, Assumption 1 implies that the selection probability N (d; u; �; h ) only depends onX and utility

components via the multiplicity regions. As we can normalize
P

d 2 DN
h(d) = 1, we interpret the resulting

probability distribution as nature determining what type of equilibrium is more likely a priori. This formulation

partially alleviates the potential misspeci�cation issues raised in De Paula (2013). A potential misspeci�cation

problem in our context would arise if the probability distribution h0(d) depends on transformed shockst or

our model is incorrect for describing the network formation process. However, assuming the model itself is

correctly speci�ed, there will not be further dependence ofh0(d) on X or any utility parameter or potential for

misspecifying this relationship.

Combining equation (4) with the de�nition of the equilibrium selection distribution in Assumption 1, it

follows that the likelihood of the problem can be written as

P(d; �; h ) =
Z

u 2 RN

X

m 2 M

h(d)
P

d02 Dm
h(d0)

I f u 2 mgg(d; u; � )
NY

i =1

Y

j 6= i

f U (uij ) du

=
X

m 2 M

h(d)
P

d02 Dm
h(d0)

Z

u 2 m
g(d; u; � )

NY

i =1

Y

j 6= i

f U (uij ) du

(9)

For simplicity in notation, let G(d; m; � ) =
R

u 2 m g(d; u; � )
Q N

i =1

Q
j 6= i f U (uij ) du. It follows that the likeli-

hood can be represented as

P(d; �; h ) =
X

m 2 M

h(d)
P

d02 Dm
h(d0)

G(d; m; � ): (10)

Note that the likelihood in (10) varies as a function of � from the selection probability and the shape of

multiplicity regions. When testing for the existing of strategic interactions, Pelican and Graham (2020) de�ne

the concept of bucket, which is a mapping from the space ofu to a collection of intervals that determine the

connection behavior of individualsi and j . In particular, Pelican and Graham (2020) argue that if the realization

of the shockuij falls into the outer buckets, then ij 's connection decision is uniquely determined, whileuij falling

into the inner buckets opens the possibility for multiple equilibria. Following Pelican and Graham (2020), we

de�ne buckets as follows.

De�nition 3 (Buckets). An outer bucket is either the interval ( �1 ; � ij + 
s 0] or (� ij + 
s L ; 1 ), while the inner

buckets are (� ij + 
s l ; � ij + 
s l +1 ] for all l = 0 ; : : : ; L � 1, where � ij = A i + A j + X i + W 0
ij � .

For example, whensij takes the form of the reciprocity externalities, then L = 1, s0 = 0 and sL = 1, while if

sij is the intransitive triads externality function, then L = N � 2 s0 = 0 and sL = N � 2. Example 1 presents a

simple case where the de�nition ofsij (d) allows for a simple characterization of the multiplicity regions. In that

example, the multiplicity regions coincide with the buckets as de�ned by Pelican and Graham (2020). However,
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for a more general externality measure such as intransitive triads, in whichsij (d) =
P

k dik dkj , the multiplicity

regions will not coincide with the buckets. Even though the two measures do not coincide, there is a tight

relationship between them. All multiplicity regions are composed of a countable number of buckets that also

determine their shape. The following Proposition formalizes this discussion.

Proposition 2 (Multiplicity Regions Characterization) . Let b 2 B be an arbitrary bucket, whereB is the set of

buckets that partition the errors' spaceRN . Then, b must be within one and only one multiplicity regionm 2 M ,

where b � m.

The proof of proposition 2 is relegated to Appendix A. Instead, we provide an example with the main intuition

of the result. Example 2 shows the geometric intuition from the result in proposition 2 for a simple case of three

individuals when the externalities are generated by the taste for completing triangles.

Example 2. Assume I 3 = f 1; 2; 3g with utility functions given by equation (1), where sij (d) =
P

k dik dkj . As

shown in equation 7, individuals are only going to form connections if their idiosyncratic shock is low enough.

In particular, following de�nition 3, we can divide the space of eachuij shock into three components given by

two outer buckets and one inner bucket. Because there is only one possible intransitive triad for each dyad, then

�s = 1 . Figure 1 shows the set of all possible buckets for individuals1, 2 and 3, where for simplicity, we consider

a bounded space ofu. Panel (a) shows that there are 27 possible buckets represented by the di�erent cubes in the

three dimensional graph, which are associated with either unique or multiple equilibria (depending on whether the

cubes are in the outer or inner buckets). Panel (b) in the same �gure shows all the possible equilibrium networks

(up to isomorphisms).

To exemplify the relationship between buckets and multiplicity regions, Panel (a) highlights in blue the cubes

representing outer buckets for all individuals in which only the empty network is an equilibrium outcome. Those

blue buckets are all part of the same multiplicity region (where only the empty network is an equilibrium outcome).

In addition to being generated by the outer buckets, the empty network can also arise from an inner bucket with

the potential to generate multiple equilibria. For instance, the empty network can also occur in the most inner

cube (composed of inner buckets), where the empty and complete networks are possible equilibria. This example

shows that the same equilibrium outcome can belong to di�erent multiplicity regions composed of di�erent buckets.

The fact that multiplicity regions are made up of buckets guarantees invariability of the shape of the regions

to small changes in parameters� . Intuitively, changes in parameters � can only a�ect the shape of the buckets,

not the number of partitions of R. Therefore, the number of multiplicity regions does not change when the

parameters change. The above discussion matters for identi�cation because the invariability of the number of

multiplicity regions to changes in the parameters � implies that the selection probabilities are independent of
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Figure 1: Multiplicity Regions and Possible Equilibrium Networks

t12

t13

t23

1

2

3 1

2

3

1
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3 1

2

3

Panel (a) Panel (b)

Note: This example shows that multiplicity regions are composed by buckets. Moreover, it exempli�es how multiple equilibria can
arise when the utility function (1) includes externalities of the form sij (d ) =

P
k dik dkj . Panel (a) displays the 3D space of the

errors u ij for individuals 1 ; 2; and 3. The blue cubes represent di�erent buckets that form a multiplicity region where only the empty
network is an equilibrium. Panel (b) shows all the possible equilibrium networks -up to isomorphisms- for this simpli�ed example
with three individuals.

changes in the parameters. The following Proposition shows that under the proposed framework, the likelihood

in (10) is locally identi�ed.

Theorem 1 (Identi�cation) . Let Assumption 1 hold. Then, the true vector of payo� parameters � 0 and the

selection probabilities h1; : : : ; hJ with J = jDN j are locally identi�ed for all d from the likelihood P(d; �; h ) at

(� 0; h0) if the following matrix is full rank

X

m 2 M

2

6
6
6
6
6
6
6
6
6
6
6
4

1
H m

@Gm 1
@
 � G m 1

H 2
m

� � � � G m 1
H 2

m
� � � � G m 1

H 2
m

...
...

. . .
...

. . .
...

�h j
H m

@Gmj
@
 �

�h j G mj
H 2

m
� � � (

P
i 6= j

�h i )G mj

H 2
m

� � � �
�h j G mj

H 2
m

...
...

. . .
...

. . .
...

�h J
H m

@GmJ
@
 �

�h J G mJ
H 2

m
: : : �

�h J G mJ
H 2

m
: : : (

P
i 6= J

�h i )G mJ

H 2
m

3

7
7
7
7
7
7
7
7
7
7
7
5

;

where d1; : : : ; dJ is a list of all networks in DN , Gmj � G(d j ; m; � ), hj � h0(d j ), we de�ne �hj � hj =h1 as the

relative probability of d j with respect to d1, and Hm �
P

d 02 Dm
�h(d0) for each multiplicity region m. We can

only identify the relative selection probabilities because we have the additional condition that
P

d 2 D h0(d) = 1 .

We chose the normalizing probability to beh1 without loss of generality.

Theorem 1 shows that, in general, for an arbitrarily large population, the likelihood in (10) contains enough

information to point identify both the parameters of interest and selection probabilities. However, in practice,

it is unfeasible to construct a probability distribution over a sequence of relatively large networks. The issue is
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that the space of networks con�gurations is excessively large even for a moderate number of nodes, such that

�nding two networks that are isomorphic becomes impractical.5 To circumvent the issue, we propose to modify

the likelihood function in 10 to form a more tractable object. Details are given in Section 3. Another potential

concern for identi�cation is that the likelihood of observing certain networks is arbitrarily close to zero. The

following remark shows that identi�cation is more robust when the number of network structures associated with

zero probability of being observed is larger.

Remark 1. The full rank condition from Theorem 1 is satis�ed even if the vector of predetermined probabilities

h has a large number of zero components. Without the loss of generality, we think about the case where there

is only one multiplicity region where the networks d1 and d2 are possible equilibria. We assume that only

the selection probabilities for those two network structures, h1 and h2, are the di�erent from zero. For any

d j 2 f d1; :::; dJ g with h(d j ) = 0, all the entries in row j are zero except for the one on the main diagonal. Thus,

given that a diagonal matrix is full rank by de�nition, whether or not the matrix in Theorem 1 is full rank, will

only depend on the entrances of the matrix associated with the equilibrium networks with non-zero selection

probabilities. For a better illustration, we applied the row transformation to the rank matrix, which results into

the following matrix

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1
H

@G1
@
 � G 1

H 2 � � � 0 � � � 0
�h 2
H

@G2
@


G 2
H 2 � � � 0 � � � 0

...
...

. . .
...

. . .
...

0 0 � � � (1+ �h 2 )G j

H 2 � � � 0
...

...
. . .

...
. . .

...

0 0 : : : 0 : : : (1+ �h 2 )G J

H 2

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

One can easily verify the rank condition is satis�ed if the 2-by-2 upper left submatrix is full rank, which only

depends on the equilibrium with non-zero selection probability.

3 Bayesian Algorithm

In this section we outline our Bayesian speci�cation that allows us to obtain statistical inference on payo�

parameters. We set the stage by introducing our assumptions to obtain a tractable Bayesian speci�cation of the

estimation problem. These assumptions concern the unobservableA as well as its relationship to covariatesX .

Speci�cally, in this context Pelican and Graham (2020) essentially treat A as �xed e�ects in the sense that no

assumptions are made about the distribution ofA conditional on X . On the other hand, we take a correlated

5Obtaining an empirical analogue of a probability distribution over networks would require observing the same network con�gu-
rations many times to compute relative frequencies, which becomes even more impractical.
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random e�ects approach (Mundlak, 1978; Chamberlain, 1982) that maintains the essential features of the problem

while making estimation simpler, particularly in a Bayesian framework. Moreover, the random e�ects approach

allows us to provide Bayesian inference for the individual heterogeneity parameters while avoiding non-standard

asymptotic theory caused by the incidental parameter issue (Yan et al., 2019). The advantage of using the random

e�ects approach can also be extended to longitudinal panel data models as in Fern�andez-Val and Weidner (2016),

where the incidental parameter issue causes non-standard asymptotic biases.

We introduce the following two assumptions on the distribution of A conditional on X .

Assumption 2 (Conditionally independent) . For all i = 1 ; : : : ; N and j = 1 ; : : : ; N with i 6= j , it holds that

(i ) A i ? A j jX i ; X j and (ii ) f (A i jX i ; X j ) = f (A i jX i ).

Assumption 3 (Correlated random e�ects). For all i , we haveA i jX i � N (� 0X i ; � 2), where � is a K -dimensional

vector of coe�cients and � 2 is a scalar variance.

Assumption 2.(i ) simply states that the in- and out-degree heterogeneity e�ects are independent across

individuals once you condition on the covariates of each dyad. Assumption 2.(ii ) then states that the joint

distribution of these e�ects will only depend on each individual's covariates. Finally, Assumption 3 is a correlated

random e�ects speci�cation for a network framework, similar to that in Mundlak (1978). This device is widely

used in nonlinear panel data methods in order to deal with unobserved heterogeneity (see, e.g., Chapter 11 of

Wooldridge, 2010). In fact, Assumption 2.(i ) together with linearity in the conditional expectation of A i , which

is part of Assumption 3, is enough to satisfy Assumption 2.(ii ) without loss of generality. To see this, note that

a more general device such as that in Chamberlain (1980) would setA i jX i ; X j � N (� 0
1X i + � 0

2X j ; � 2) for each

dyad. However, as only the sum ofA i and A j appears in the marginal utility equation for any dyad, we cannot

identify both � 1 and � 2 separately; we can only identify their sum. Thus, we do not gain more 
exibility by

including both sets of covariates.

Our results so far do not depend on the speci�c form of the distribution of idiosyncratic errors f U (u).

As mentioned previously, while a standard assumption in the network formation literature is to specify this

distribution as logistic, we instead assume thatU is i.i.d. across dyads with a standard normal distribution such

that

f U (u) =
NY

i =1

Y

j<i

� (uij ) ;

where � (�) is the standard normal density. This normalization can be achieved by setting the distributions of

the original ~Uij as N (0; 2) independently across dyads. Setting the variance of this distribution to unity can

be seen as an identifying restriction, which is standard in models with binary dependent variables (see, e.g.,
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pp. 476, Cameron and Trivedi, 2005).6 Indeed, as we only observe whether a speci�c link was formed or not,

all scalings of the idiosyncratic shocks will be observationally equivalent. This assumption results in a normal

likelihood for the latent variables and plays well with Assumption . As is standard in Bayesian analysis, other

robust alternatives are available and can be incorporated easily into the resulting sampling scheme.

De�ne u�
ij � uij � A i � A j � W 0

ij � for i = 1 ; : : : ; N and j = 1 ; : : : ; N with i 6= j . Using Assumption 3, we

can write A i = X 0
i � + ai for all i , where ai � N (0; � 2) and ai is independent ofX . Replacing into the de�nition

of u�
ij , we have

u�
ij = uij � X 0

i � � X 0
j � � W 0

ij � � ai � aj : (11)

Following the way the elements of an adjacency matrixd 2 DN are indexed, we can �rst stack (11) across rows

i for a given j to obtain

u�
� j = u� j � X � j � � �N � 1X 0

j � � W� j � � a� j � �N � 1aj ; j = 1 ; : : : ; N ;

where �N � 1 is an (N � 1)-dimensional vector of ones,u�
� j and a� j are N � 1-dimensional vectors,X � j is a

(N � 1) � K matrix, W� j is a (N � 1) � K 2 matrix and we de�ne

u�
� j =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

u�
1j

...

u�
j � 1;j

u�
j +1 ;j

...

u�
N j

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; X � j =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

X 0
1

...

X 0
j � 1

X 0
j +1

...

X 0
N

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; W� j =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

W 0
1j

...

W 0
j � 1;j

W 0
j +1 ;j

...

W 0
Nj

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; a� j =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

a1

...

aj � 1

aj +1

...

aN

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; u� j =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

u1j

...

uj � 1;j

uj +1 ;j

...

uNj

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

We can then stack across the indexj to obtain

u � = u � (F + G)X � � W � � (F + G)a ;

where u � and u are N (N � 1)-dimensional vectors,a is an N -dimensional vector, F and G are N (N � 1) � N

6The use of a standard logistic density in the network formation literature, which sets the variance of u ij equal to � 2=3, is another
such identifying restriction. Of course, other restrictions are possible, such as �xing the value of one coe�cient or the sum of the
coe�cients. However, these restrictions would impact the meaning and interpretation of preference parameters, and so we choose to
�x the variance of shocks instead.
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matrices, X is a N � K matrix, W is a N (N � 1) � K 2 matrix,

u � =

2

6
6
6
6
4

u�
� 1

...

u�
� N

3

7
7
7
7
5

; F =

2

6
6
6
6
4

F� 1

...

F� N

3

7
7
7
7
5

; X =

2

6
6
6
6
4

X 0
1

...

X 0
N

3

7
7
7
7
5

; W =

2

6
6
6
6
4

W� 1

...

W� N

3

7
7
7
7
5

; a =

2

6
6
6
6
4

a1

...

aN

3

7
7
7
7
5

; u =

2

6
6
6
6
4

u� 1

...

u� N

3

7
7
7
7
5

;

G = I N 
 �N � 1 and F� j is an identity matrix of order N with column j removed. Using basis vectorsei 2 RN

that have a 1 at component i and zeros everywhere else, we can writeF� j = [ e1 � � � ej � 1 ej +1 � � � eN ]0. Finally,

we can condense the resulting expression by de�ningeX = [ H X W ], H = F + G and � = [ � 0� 0]0 to obtain

u � = u � eX � � H a : (12)

As discussed in Section 2, we ultimately uset ij � u�
ij =
 as it contains all sample information relevant for

estimating utility parameters. With this de�nition of latent variables, from (3) we have that an equilibrium

network d 2 D(t ) satis�es for all dyads ij ,

dij = dji = I(sij (d) � t ij )

In this way, we can separate the e�ects of degree-heterogeneity and homophily on marginal utility from

those of the externalities. Furthermore, we see that this simpli�es our de�nitions for buckets and multiplicity

regions given in Section 2. That is, we can simply re-de�ne buckets and multiplicity regions from the support

of original shocks u to the transformed t . This change in de�nition modi�es the buckets to be of the form

(�1 ; s0], (sL ; 1 ), or (sl ; 
s l +1 ] for l = 0 ; : : : ; L � 1, where � ij and 
 are no longer relevant (this change in

expectation and scale is included as part of the distribution oft after the transformation). We can also update

our de�nitions of the equilibrium selection distribution N (�), as, conditional on t , all of the multiplicity in

equilibria come from the dyad-level shockst ij falling into regions that only depend only on the externality values

s(d) = ( s12(d); : : : ; sN (N � 1)=2(d)) and their support. With this change, the equilibrium selection distribution

becomes

N (d; u; �; h ) = N (d; t ; h) =
X

m 2 M

h(d)
P

d 02 Dm
h(d0)

I (t 2 m)g(s(d); t ) (13)

where now

g(s(d); t ) =
NY

i =1

Y

j<i

I [sij (d) � t ij ]dij � I [sij (d) < t ij ]1� dij
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We can then express the joint distribution of d and t as

P(d; t ; �; h ) = N (d; t ; h)f (t j�; a; � 2; 
 ) (14)

where the conditional distribution f (t j�; a; � 2; 
 ) is multivariate normal:

t j�; a; � 2; 
 � N

 

�
~X� + H a



;

1

 2

!

(15)

To complete a Bayesian speci�cation of the problem, we let the joint prior distribution be

� (t ; �; a; � 2; 
 ) = f (t j�; a; � 2; 
 )� (� )� (aj� 2)� (� 2)� (
 ):

As we assume in our identi�cation results that 
 � 0, we can incorporate this restriction into our prior � (
 ) by

choosing a distribution with support on the non-negative reals or by truncating to this part of the parameter

space. We will assume the standard conditionally conjugate priors given as

� � N (
�
�;

�
B ) ;

� 2 � IG (
�
v=2;

�
� 2=2) ;

where IG is the inverse Gamma distribution. Symbols with an underline are prior hyperparameters and the

updated (posterior) quantities will be denoted using an overline. We obtain tractable estimation of 
 by using

the generalized inverse normal prior proposed in Robert (1991).
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� GIN + (
�
�;

�

;

�
� 2)

As noted by Robert (1991), this prior is conjugate for mean mixture models where the mean is a multiple of the

standard deviation. The generalized inverse normal distribution can place substantially large density on (0; 1 )

for given parameter values. With large sample sizeN , the density placed in this part of the support increases.

However, as a truncated version of the distribution would maintain conjugacy, we directly use the truncated

generalized inverse normal to the positive reals as our prior. As noted in Appendix D, this corresponds to the

notation GIN + .

An important consequence of including the latent t into our sampling scheme is that now the likelihood

(14) separates into two terms. The preference parameters enter the likelihood through the second term. This

immediately implies that the conditional posterior distributions of �; a, � 2 and 
 will only depend on the networks
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through values of t . To see this, note that the joint conditional posterior is

� (�; a; � 2; 
 jd; t ) / N (d; t )f (t ; �; a; � 2; 
 )

/ f (t j�; a; � 2; 
 )� (� )� (aj� 2)� (� 2)� (
 )

Thus, we can obtain a Gibbs sampling algorithm for�; a, � 2, and 
 by focusing on the posterior with likelihood

given by the conditional distribution of t . Combining the likelihood in (14) with our prior speci�cation allows

us to �nd the posterior distribution of all quantities of interest. For the coe�cients � and random e�ects a, we

can obtain a joint posterior as � (�; ajt ; � 2; 
; d) = � (� jt ; � 2; 
; d)� (ajt ; �; � 2; 
; d). Standard updates (see, e.g.,

Chib, 2008) result in posteriors

� jt ; � 2; 
; d � N (� ��; �B ) ;

ajt ; �; � 2; 
; d � N (� 
 �a; �V ) ;

� 2jt ; �; a; d � IG (�v; �� 2)

(16)

As the chosen generalized inverse normal prior is conjugate for this problem, the posterior of the externality

parameter is
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jt ; �; � 2; d � GIN + (��; �
; �� 2) ; (17)

De�ne 
 � I N (N � 1) + � 2HH 0. The updated posterior hyperparameters are given by

�B = ( eX 0
 � 1 eX +
�
B � 1) � 1 ; �v =

�
v + N ;

�� = �B (
 eX 0
 � 1t +
�
B � 1

�
� ) ; �� =

�
� + N ;

�V = ( H 0H + � � 2I N ) � 1 ; �
 = �
� 2t 0( ~X� + H a) +

�



�
� 2t 0t + 1

;

�a = �V H0(t � eX � ) ; �� 2 = �
� 2

�
� 2t 0t + 1

;

�� 2 = a0a +
�
� 2 :

(18)

A Gibbs sampler that cycles through the conditional posteriors in (16) and (17) requires obtaining samples from

the (truncated) generalized inverse normal distribution. To the best of our knowledge, no such algorithm exists

in the literature. Therefore, an additional contribution of our paper is to provide an e�cient sampling algorithm

for this distribution and its truncated variants. We now provide a short digression on the theoretical results

supporting this sampling algorithm, but leave the full extension to Appendix D.

20



To establish the main result supporting our sampling algorithm for the generalized inverse normal distribution,

we require the de�nition of Tc-concavity (see H•ormann and Leydold, 2014). We then provide a proposition

establishing that the kernel of this distribution is Tc concave with a value ofc = � 1=� .

De�nition 4 (H•ormann and Leydold, 2014). A function f (x) is called Tc-concave (for c 6= 0) if sgn( c)f (x)c is

concave. It is calledT0-concave if it is log-concave.

Proposition 3. The kernel of the standard generalized inverse normal distributionGIN (�; 
; 1), given by

g(�; �; 
 ) is T� 1=� -concave.

The sampling algorithm we derive in this paper is based on the ratio-of-uniforms method with mode shift

proposed by Kinderman and Monahan (1977). Leydold (2001) and H•ormann and Leydold (2014) show that this

algorithm is e�cient for T� 1=2-concave distributions and is especially useful in the varying-parameters setting

that characterizes Bayesian sampling schemes. The following theorem shows that the generalized inverse normal

distribution is in fact T� 1=2-concave in a region of the parameter space, which follows easily from the previous

proposition.

Theorem 2. The kernel g(�; �; 
 ) is T� 1=2-concave when� > 2.

Using these two results, Appendix D presents pseudo-code and the full details of Algorithms 1{3 for sampling

from the GIN distribution. The �rst two implement the sampling for the truncated variants to either the

negative or positive reals, while the third one does so for the full distribution supported on the real line. We

provide Python and R routines that implement all generating algorithms described in the paper. A showcase of

the draws obtained from the procedures are given in Figure 2.

Remark 2. It is important to acknowledge that our algorithm will not work as is for values of � 2 (1; 2]. One

could try to accommodate this part of the parameter space by deriving an envelope function over the log-convex

parts of the distribution (e.g., H•ormann and Leydold, 2014, for the generalized inverse Gaussian distribution).

However, we can show the restriction of our sampling algorithm to� > 2 is not of concern if the goal is to

carry out Bayesian estimation. As in Eq. (18), when using aGIN (
�
�;

�

;

�
� ) distribution as the prior for a scale,

the posterior distribution is also generalized inverse normal with updated parameter �� =
�
� + N , where N is

the sample size. Thus, even an uninformative prior that sets
�
� = 1 + " for some small " > 0, would have

�� = 1 + N + " > 2, as long asN � 1; i.e., when there is at least one observation. This means that for posterior

sampling, we are e�ectively always drawing from distributions where� > 2. Thus, in this paper we do not pursue

such an optimization for the algorithm and defer it for future research.
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Figure 2: Sampling from the Generalized Inverse Normal distribution (Robert, 1991)

(a) GIN (5; 0; 1) distribution (b) GIN (5; 0; 1) distribution truncated to R+ .

Notes: The solid line is the theoretical density and the histogram represents draws from the distribution using
Algorithms 1{3 in Appendix D.

To complete our sampling scheme, we need to obtain the conditional posterior fort , which is given by

� (t jd; �; a; � 2; 
 ) / N (d; t )f (t j�; a; � 2)

=
X

m 2 M

h0(d)
P

d 02 Dm
h0(d0)

I (t 2 m)g(d; t )f (t j�; a; � 2; 
 ) (19)

To make sense of this expression, �rst note thatg(d; t ) imposes constraints on eacht ij , as they need to be such

that they satisfy our equilibrium concept for a given equilibrium network d. Furthermore, this latent component

of marginal utility should be such that equilibrium solutions arising from t belong to the same multiplicity region

asd. Finally, as d can be an equilibrium network for several multiplicity regions, the posterior of t weights each of

these regions according to the underlying network distribution from Assumption 1. Putting everything together

implies that the posterior of t is a mixture of truncated multivariate normals across multiplicity regions, with

mixture weights given by the conditional probability of observing network d in each multiplicity region. 7

The main issue in obtaining draws for t is that we must now invert the mapping of shocks to equilibrium

networks. That is, we need to ensure sampledt satisfy the equilibrium restrictions for a given network. To

accomplish this, we need a way to evaluate the equilibrium selection probabilities; i.e., we need to compute

N (d; t ). As this is unfeasible given the current setup, we introduce one further simplifying assumption in the

form a composite likelihood that replaces the full likelihood (14) for sampling the two remaining components.

7 If a network d cannot arise as an equilibrium network for shocks in multiplicity region m (i.e., d =2 Dm ), then the associated
mixture weight of multiplicity region m is 0 becauset =2 m.
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3.1 Composite Likelihood Function

Let d (K )
k be the subgraph of sizeK induced by the network d. Construct the sequence ofN chooseK subnet-

works f d (K )
1 ; : : : ; d (K )

N K
g, where NK is the total number of subnetworks that emerge when forming all possible

combinations of nodes of sizeK . Therefore, the marginal probability of observing network d can be constructed

by the joint probability of observing the sequence of subnetworksf d (K )
1 ; : : : ; d (K )

N K
g. We impose the following

set of assumptions on the behavior of individuals when deciding how to form connections in each of theNK

subnetworks.

Assumption 4 (Subnetworks Individuals' Behavior). (i) each subnetwork d (K )
k forms following the Pairwise

Stability criteria in De�nition 1, and (ii) the game structure and payo�s are the same for any subgraph.

Assumption 4 guarantees that all the form of the likelihood of observing the complete network is inherited

by the subnetwork structures, see Schweinberger and Handcock (2015) for a similar set of assumptions on

large networks formed following an Exponential Random Graph model. Under these assumptions, the marginal

likelihood of each subgraph will be given by

P(d (K )
k ; �; ~h0) =

X

m 2 M K

~h0(d (K )
k )

P
d 02 Dm

~h0(d0)

Z
I (u (K ) �

k 2 m)g(d (K )
k ; u (K ) �

k ; 
 )f (u (K ) �
k j� )du (K ) �

k ;

for all the possible multiplicity regions M K for subnetworks of sizeK , and for all k in the sequence ofNK

subnetworks. The distribution ~h0 is a predetermined distribution over subnetworks and can be expressed in

terms of the original predetermined distribution h0 (details can be found in Appendix A).

Characterizing the joint distribution over the sequencef d (K )
1 ; : : : ; d (K )

N K
g is still unfeasible. We follow the idea

in Graham (2020) and propose a composite likelihood that is formed by multiplying the marginal distributions

of NK subgraphs formingd,

~P(d; �; ~h0) =

"
N KY

k=1

P(d (K )
k ; �; ~h0)

#! k

; (20)

where! k weights the importance of the marginal of tetrad k in the composite likelihood. The weights in equation

(20) have to be such that
P K

k ! k = 1. The advantage of a composite likelihood is that, even though it fails

to correctly represent the dependence structures across di�erent subgraphs, if the marginal distributions are

correctly speci�ed, estimators for � based on the composite likelihood are consistent for the true population

parameter (Cox and Reid, 2004; Varin et al., 2011). In addition, by choosing values ofK that make the space of

potential network con�gurations manageable, it is possible to provide a tractable probability distribution over

the set of possible equilibrium networks. As expected, whenK ! N , the composite likelihood in (20) collapses to

(9), and we are back to the situation where the identi�cation of selection probabilities is an intractable problem.
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In our case, we cannot guarantee the correct speci�cation of the subgraph marginal distributions. The reason

is that when we split the complete network d into subnetworks d (K )
k , the externality values in the subnetworks

sij (d (K )
k ) will underestimate the true externality values sij (d) for several interesting externality functions. For

example, if sij represents taste for completing triangles, the maximum number of indirect connections that a

node can have isK � 2, while in the complete network that number is given by N � 2. The following example

illustrates the approximation error that arises when using the misspeci�ed composite likelihood.

Example 3. Consider the case whereA i = 0 for all i , externalities are given by intransitive triads sij (d) =

dik dkj , 
 � 0 and assumeK = 4 . In this case, there are only two possible indirect connections for eachi in the

subnetworksd (4)
k , while in the complete network that number isN � 2. Figure 3 illustrates the misspeci�cation

error induced by the composite likelihood under the assumption thatuij are iid from a normal distribution. The

error will only arise when we underestimate the total number of indirect links betweeni and j . In the Figure,

we represent the true number of indirect connections bysij (d). Because the true externality value is located to

the right of 2 {the maximum number of indirect links in a tetrad subnetworks{ there will be a misspeci�cation

error in this case. The error is given by the log of the ratio between the blue and the gray areas. As discussed

by White (1982), we can interpret this ratio as the Kullback and Leibler (1951) (KL) divergence criteria. As

we would expect, when we let the size of the subnetworksK approach the total number of nodesN , the number

of intransitive triads will approach the true value. Therefore, the gray and blue areas ratio will approach one,

meaning zero approximation error.

From Figure 3 it is easy to see that both payo� parameters have a direct in
uence on the speci�cation error.

The utility parameters change the limits of the outer bucket delimited by� + 
 ,W 0
ij � + 2 
 and its distance to the

true externality value. Because the distribution determining the gray and the blue areas is non-linear, changes

in the limits of the outer bucket will change the speci�cation error even for proportional changes such as those

that happen after varying the value of� .

Example 3 discusses the approximation error that arises because of the misspeci�cation induced by the fact

that we are underestimating the true externalities value sij (d). However, from equation (9), it follows that

the likelihood is also a function of the equilibrium selection probabilities h0. The dependence of the complete

likelihood on those probabilities raises the question of whether the composite likelihood approximation also

induces approximation errors when trying to identify h0. The following proposition shows that, because of the

multiplicative form, the misspeci�cation error only a�ects the utility function parameters � and 
 . Proposition

4 also characterizes the approximation error. As expected, the error for each tetradk depends on the distance

between the externality valuessij (d) and sij (d (K )
k ) weighted by ! k for each k 2 K .

Proposition 4 (Misspeci�cation Error) . Let (� 0; h0) be the true parameter vector, and denote the misspeci�cation
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Figure 3: Example of the Composite Likelihood Misspeci�cation Error

Possible Buckets

W 0
ij � W 0

ij � + 
 W 0
ij � + 2 
 W 0

ij � + sij (d)
uij

f (uij )

Note: This example illustrates the misspeci�cation error that arises when using the incorrectly speci�ed composite likelihood. We
separate the space of the shocks for arbitrary individuals i and j into buckets following De�nition 3. When using the subnetworks
to separate the shocks' space, the further right bucket starts in 2 
 . Let sij (d ) represent the true number of indirect connections
between i and j . Then, under the assumption that u ij are iid from a normal distribution, the misspeci�cation error arises for
underestimating the total amount of indirect links, and it is given by the ratio between the blue and the gray area.

error as KL (d; � 0; h0) = log P(d; � 0; h0) � log ~P(d; � 0; h0), where we useKL to represent the Kullback-Leibler

divergence measure. Let Assumption 4 hold. Then,

KL (d; � 0; h0) = �

2

6
4

N KX

k

! k logqk (d (K )
k ) +

N KX

k=1

! k

NX

i =1

X

j<i

log

0

@

R
u ij

I (sij (d) � � t ij ) f (t ij )dt ij

R
t ij

I
�

sij (d (K )
k ) � t ij

�
f (t ij )dt ij

1

A

dij

�

0

@

R
t ij

I (sij (d) < t ij ) f (t ij )dt ij

R
t ij

I
�

sij (d (K )
k ) < t ij

�
f (t ij )dt ij

1

A

1� dij
3

7
5 ;

We provide the proof of Proposition 4 in Appendix A. In the proof, we also characterize the marginal e�ect

of changing � and 
 on the KL divergence. Importantly, we �nd that the marginal e�ect of the utility function

parameters can be decreased by choosing the weights! k for each subnetworkk. Intuitively, we want to have

higher weights on subnetworks for which the distance betweensij (d) and sij (d (K )
k ) is smaller. The subnetworks

with low values of sij (d) � sij (d (K )
k ) can be found by inspecting the connectivity of the subnetworkk with the

rest of the network. Therefore, the subnetworks with lower external connectivity should have a larger weight

than those with higher connectivity.

In our Bayesian speci�cation, the use of the composite likelihood introduces an additional consideration for

sampling. Given that the preference parameters carry a structural interpretation in Equation (1), we decide

against allowing for speci�cations where the preference parameters vary across tetrads. Thus, all of the infor-

mation present in the sequence oft (K ) can be used to sample from the distribution of� , a, � 2 and 
 . This

is equivalent to pooling the information present across tetrads (with associated weights! ) but maintaining the
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speci�cation given in (12). This process can be implemented by combining the information fromX and a (in-

formation on each node) across tetrads. This is the process that we undertake in the empirical results for our

Bayesian estimation.

4 Empirical Application

This section presents an empirical application that highlights the relevance and practicality of our proposed

Bayesian estimator. We use data from Banerjee et al. (2013), whose primary objective is to study learning

di�usion through social networks in the context of micro�nance participation for 77 villages in Karnataka, India.

Banerjee et al. (2013) examines micro�nance take-up di�usion in a network, arguing that the information seed

is exogenous because it is decided by a third-party institution that is not explicitly maximizing any individual

or aggregate objective function. Interestingly, though, the authors acknowledge that the social network itself is

likely to be endogenous. They mention homophily reasons arguing that connected individuals tend to exhibit

strong similarities. As we have argued, there are additional strategic consideration that can a�ect individuals

decisions to form connections such as degree heterogeneity and payo� externalities. Given the availability of

granular and rich network information, our data is particularly well-suited to investigate which channels are

indeed relevant for individuals to form social ties.

4.1 Network Data

The data comes from the Social Networks and Micro�nance project which contains the publicly available data

of participation in a program of Bharatha Swamukti Samsthe (BSS), a micro�nance institution (MFI) in rural

southern Karnataka. The data were collected in 2006 for 77 villages and include information of thirteen possible

dimensions in which individuals can be connected, including visiting each other, going to pray, borrowing and

lending money and goods, obtaining advise, and giving advise (Banerjee et al., 2013). Additionally, the data

contain a village questionnaire and a full census including some information on all households in the villages.

Individuals' characteristics include gender, age, religion, caste, sub-caste, mother tongue, whether the individual

is a village native, education, work frequency and occupations. There are two levels of aggregation in the data:

individuals and households. Given that our objective is to estimate the utility function parameters of individuals

making strategic choices, we will use the individual level data to �t our model.

Regarding the construction of the social network, we follow Banerjee et al. (2013) when de�ning our network

of interest. We consider the connections to be undirected, so we use the symmetric version of the adajacency

matrices capturing the connections between individuals. Therefore, we consider two individuals to be neighbors

in the network if at least one of them mentions the other as a contact in response to some network question.
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Table 2: Summary Network Statistics

Village Nodes Average Degree Transitivity Average Distance Components
60 1775 8.67 0.45 4.63 16
28 1612 9.40 0.52 4.36 18
59 1599 8.37 0.44 4.68 20
52 1525 10.28 0.36 4.13 12
71 1387 8.26 0.33 4.44 13
3 1380 7.78 0.35 4.36 21
39 1339 8.96 0.45 4.29 14
29 1337 7.61 0.39 4.53 21
65 1331 9.22 0.30 4.09 11
25 1313 9.33 0.46 4.21 10
64 1286 8.67 0.46 4.46 10
46 1257 7.71 0.39 4.55 12
23 1252 8.40 0.39 4.27 19
36 1214 8.61 0.31 4.07 21
32 1181 9.42 0.42 4.10 15
55 1180 7.84 0.48 4.84 12
76 1154 8.15 0.45 4.48 13
18 1146 9.10 0.38 4.13 5
19 1134 9.19 0.40 4.18 5
40 1097 7.89 0.40 4.58 11

Note: table with the network statistics for the 20 most populated villages out of the 77 villages in the
data. The average distance is calculated as the maximum distance in all possible connected components.

Finally, instead of considering each of the thirteen possibles ways in which people interact in these villages a

di�erent network, we consider two people linked if they mentioned each other in at least one type of relationship.

Table 2 presents some summary statistics for the social networks of the 20 most populated villages in the sample.

The networks consistently show relatively high average degrees between approximately 8 and 10 connections. The

levels of transitivity are across the board lower than 0.5, meaning that there are more incomplete triangles than

complete ones. These transitivity values present initial evidence that individuals may not have a substantial

payo� from completing triangles (Jackson and Rogers, 2007). These networks also feature a relatively high

average shortest path length (distance) and a large number of disconnected components. All these attributes are

suggestive of highly clustered networks that are sparse across clusters.

4.2 Data on Individual Characteristics

The Social Networks and Micro�nance project also includes a battery of variables characterizing individuals in

the villages. We have information on gender, individuals' role in the household (head of the household, spouse

of the head, or other), age, religion, cast, sub-cast, languages that the individuals speak, working status, saving

behavior, and participation in the �nancial market. We choose a subset of those characteristics to construct

our homophily measure in equationWi;j from Equation (7). In particular, we use the working status, gender,
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individuals' role in the household, cast, and whether or not the individual is native from the village, and construct

a set of dummy variables. Using this information, the measure of homophily is whether two individuals match

in the value of each of the dummy variables. If they match, the homophily variable takes the value of zero, and

it takes the value of one if they mismatch.

4.3 Subgraphs and Selection Probabilities

As we argue in Section 2.3, it is untractable to estimate probability distribution over a sequence of large networks

in practice. The data we are using contains large networks for each village, with a sample size between 780 and

1775 nodes. Section 3.1 presents a solution for this practical issue based on the idea of subgraphs and composite

likelihoods. One relevant parameter that we need to choose is the number of subgraphsK . As argued by Graham

(2017), working with subgraphs of size four (tetrads) provides enough variation to identify homophily parameters

while at the same time having the the advantage of yielding a criterion function that is easy to evaluate and

maximize. Tetrad subgraphs also contain enough nodes to provide variation in the number of complete and

incomplete triads. Based on these arguments, we chooseK = 4 to perform our Bayesian estimation algorithm.

An additional convenient feature of working with tetrads, is that it is possible to completely characterize all the

possible con�guration of the subnetworks. Figure 4 presents the 11 unique isomorphism classes in which tetrads

can be wired.

4.3.1 Selection Probability Estimator

Based on the 11 isomorphism classes in Figure 4 and under Assumption 1, it is possible to non-parametrically

estimate the selection probabilities for each isomorphism given the observation of one large network. In obtaining

these results, as well for all those that follow, we assume for the sake of simplicity that �� ij (d; Uij ) = � � ji (d; Uji ).

Under this simplifying assumption, the pairwise stability criteria in De�nition 1 reduces to the requirements that

(i) if dij = 1, then � � ij (d; Uij ) � 0, and (ii) if dij = 0, then � � ji (d; Uij ) < 0. This allows to focus only on one

shock per dyad, which greatly reduces the computational complexity of the algorithms presented in Section 3.

The estimator for the selection probabilities is then given as follows: from the observations of a sampled

network d of size n, construct the sequence ofn choose 4 possible tetrads in the network and claculate the

frequency of each isomorphism. The frequency values are our estimator for the predetermined probabilities

h0(d (4)
k ). After estimating the predetermined probabilities, conditional on the form of the externality component

sij (d), it is possible to form the buckets as de�ned in 3, construct the multiplicity region following proposition

2, and form the quotient h0(d (4)
k )=

P
d02 Dm

for each multiplicity region m. For instance, if sij (d) is the test

for completing triangles externality, for each tetrad, there are a total of three values for the possible number
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Figure 4: Tetrads Isomorphisms
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Note: each of the graphs represent one possible tetrad con�guration. A tetrad can be wired in up to 64 di�erent ways,
but the 11 con�gurations in this �gure are the unique isomorphism classes. Any tetrad can be represented by one of the
graphs in this �gure up to rotating indexes (Graham, 2017).

29



Table 3: Estimators of Tetrads Probabilities

Tetrad Village 60 Village 28 Village 59
Empty 0.324 0.352 0.358
One Edge 0.449 0.471 0.476
Two Edge 0.049 0.049 0.048
Two Star 0.061 0.047 0.047
Triangle 0.068 0.064 0.056
Four Path 0.009 0.006 0.006
Three Star 0.002 0.001 0.001
Four Cycle 0.000 0.000 0.000
Tailed Triangle 0.007 0.005 0.005
Chordalcycle 0.001 0.001 0.001
Clique 0.029 0.004 0.002

Note: table with the non-parametric estimates of the tetrads probabilities based on the three vil-
lages with larger sample sizes. We compute then choose 4 sequence of tetrads wheren represents
the number of nodes in each village, and then use that sequence to calculate the proportions of
each tetrad isomorphisms.

of intransitive triads for individual i . Following the same idea as in equation 5, it is possible to construct four

buckets. Given that the links are undirected, there are six possible ways in which the upper triangular elements

of the tetrads adjacency matrices can be arrange that can be mapped to the isomorphism. Therefore, there are

a total of 4,096 possible combinations of matrix con�gurations and buckets, and we can know exactly to what

bucket each isomorphism belongs.

Table 3 presents the estimates of the predetermined probability of each tetrad isomorphism for the three

villages with the larger sample sizes. We see that the most likely con�guration to emerge is the One Edge

followed by the Empty isomorphisms. These two network con�guration are the most sparse among all possible

isomorphisms, which suggest that the social networks in our sample are relatively sparse. This result is cosistent

with the relatively low transitivity index and large average distance from the network statistics presented in Table

2. Based on the predetermined probabilities presented in Table 3, it is then possible to calculate the relative

frequency of each isomorphisms with respect to the other network con�gurations that belong to its multiplicity

region. Again, that calculation completely depend on the speci�cation of the payo� externality form in sij (d).

4.3.2 Misspeci�cation Error Analysis

As we discussed in section 3.1, the composite likelihood approach we propose in this paper is sensitive to potential

misspeci�cation errors caused by di�erences in the values of externalities between the complete network and the

subnetworks. However, we also showed the misspeci�cation error decreases when the subnetwork externality

values for a dyadij are not larger than those in the complete network. In particular, for our empirical application

we focus on the intransitive triads externalities, sij (d) = dik dkj , and subnetworks of sizeK = 4. In this case, in
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