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Abstract

This paper introduces a unified estimation methodology using copulas for multivariate
fractional outcomes with a conditional mean specification. These outcomes are defined
as vectors where each component is bounded to the unit interval and together they add
up to 1. The methods satisfy the fractional and unit-sum constraints while allowing for
cross-equation restrictions among the conditional mean parameters, which are crucial in
applications to structural estimation. While ultimately Bayesian in nature, the paper
rigorously examines the asymptotic properties of the arising frequentist estimators, as
they are themselves additions to the literature. The methodology is augmented to handle
variable selection using regularization in a Bayesian framework. A range of numerical
exercises evaluate the properties of the estimators and showcase their flexibility in examples
of both structural and reduced form models. An empirical application to transportation
expenditures in Canada is also presented.
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1 Introduction

The analysis of multivariate fractional outcomes Y = (Y1, . . . , Yd)
′ is prevalent in several fields

such as biology, chemistry, economics, geology, and others (Aitchison, 2003; Kieschnick and
McCullough, 2003). The nature of the outcomes implies that they are both fractional (i.e.,
bounded between 0 and 1) and satisfy a unit-sum constraint. These types of observations are
known as compositional data in the statistics literature and are characterized as belonging to
the d-dimensional simplex

Sd =

{
(y1, . . . , yd) ∈ Rd : 0 ≤ yj ≤ 1, j = 1, . . . , d;

d∑
j=1

yj = 1

}
.
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Fractional outcomes arise naturally in economic applications when estimating a demand system
in which the dependent variables are given as expenditure shares on d different categories of
goods (Woodland, 1979; Barnett and Serletis, 2008). They are also central in other contexts
such as finance, where they can represent portfolio shares allocated to different stocks (Glassman
and Riddick, 1994; Stavrunova and Yerokhin, 2012; Mullahy, 2015), or in industrial organization
and management when discussing market shares for different companies within a given industry
(Morais et al., 2018). Other applications for these outcomes include time of use in health
production functions (Mullahy and Robert, 2010), dividends and firm analysis (Loudermilk,
2007; Ramalho and Silva, 2009; Sosa, 2009; Sigrist and Stahel, 2011), psychology (Smithson and
Verkuilen, 2006; Johnson and Mislin, 2011), among others.

In microeconomics, multivariate fractional outcomes are salient in two strands of the liter-
ature: structural microeconomics, specifically within demand system estimation, and reduced
form regression analysis. In both contexts, there are similar key model characteristics that need
to be taken into account.

First, most reduced form or structural models produce an estimating equation in the form
of a conditional mean such as

E[Y |X = x] = m(x,β) ,

where Y represents the outcomes that take values in Sd; X are some covariates such as price,
expenditure, and functions of these and other variables; β represents the parameters of interest
that may or may not have a structural interpretation; and m(x,β) = (m1(x,β), . . . ,md(x,β))′

is a vector of (possibly) nonlinear functions of covariates and parameters (Papke and Wooldridge,
1996, 2008). Example 1 in subsection 2.1 presents the conditional mean for the Almost Ideal De-
mand (AID) model of Deaton and Muellbauer (1980), a widely used structural demand system.
Example 2 presents a multivariate fractional logit specification, which is a popular functional
form for regression analysis with multivariate fractional outcomes (Mullahy, 2015; Murteira and
Ramalho, 2016). This paper starts from the conditional mean as the primary object and builds
methods that impose such specification while maintaining flexibility.

A second key fact is that variable selection can be crucial. For example, when the dimen-
sionality of the outcomes in structural demand systems is large or when many determinants of
the allocations are considered, selecting which effects remain important for determining house-
hold consumption patterns is a variable selection issue. Additionally, there are meaningful ways
in which the fit of structural demand systems can be improved by considering polynomials to
approximate certain functions underlying the specification (Lewbel, 1991). The degrees of these
polynomials would then need to be selected from the data (Lewbel and Pendakur, 2009). Simi-
larly, covariate selection remains an important specification issue in reduced form models. It is
thus necessary that the methods used to estimate these models can also handle variable selec-
tion. Inference would then need to be adjusted to account for the effect of selection, but this
adjustment can be technically complex (Knight and Fu, 2000; Chernozhukov et al., 2018). To
address this issue, this paper employs Bayesian methods, which can incorporate selection via
regularization in a similar way to LASSO and its alternatives while inference remains simple
(Park and Casella, 2008; Li and Lin, 2010; Leng et al., 2014).

Third, structural demand models usually impose constraints on the parameter vector β to
satisfy the economic regularity of the demand functions they produce. These are not only
restrictions within each equation of the conditional mean but may also include cross-equation
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restrictions (Barnett, 2002). The AID model, for example, imposes homogeneity in expenditures
and prices as well as symmetry of the Slutsky matrix via these cross-equation restrictions, both
of which are important testable assumptions of the theory. Perhaps more important within this
literature is the idea of curvature that is encoded in the negative semidefiniteness of the Slutsky
matrix (Blundell et al., 2012; Chang and Serletis, 2014). Much of the research in demand
estimation is thus dedicated to introducing and analyzing the properties of different models
that can both expand the theoretical foundation of demand systems and capture important
patterns in the data (Lewbel and Pendakur, 2009; Barnett and Serletis, 2008). In estimating
these models, the first and third key facts are considered at length in the literature, but the
second fact is not generally taken into account. The simplex nature of the multivariate fractional
outcomes is also generally ignored by assuming an unrestricted distribution for Y centered at
m(x,β) (Barnett and Serletis, 2008). This paper aims to correct this gap.

The main contribution of this paper is to introduce a unified estimation procedure via cop-
ulas that simultaneously incorporate all points discussed previously. That is, these methods
impose the fractional and unit-sum constraints of multivariate fractional outcomes, satisfy a
conditional mean regression structure, allow for variable selection with correct inference, and
can incorporate cross-equation restrictions. The use of copulas also broaden the possible depen-
dence patterns between each share in the system, which is a general concern in the compositional
data literature (Aitchison, 2003). The paper first presents two ways of constructing a likelihood
using copulas. The marginal distributions impose the conditional mean specification and satisfy
the fractional restriction, while the joint distribution captures the dependence structure and
unit-sum constraint between shares. The generality in constructing the likelihood functions al-
lows for a unified way to estimate both structural demand systems and reduced form models.
As the maximum likelihood estimators (MLE) arising from this construction are themselves
contributions to the literature on multivariate fractional outcome models, the paper derives the
asymptotic properties of these estimators in a standard frequentist context before diving into a
full Bayesian solution.

In order to handle model selection, the paper then uses a general class of priors in a Bayesian
framework to augment the base estimators through the use of regularization (Park and Casella,
2008; Hans, 2009). This form of selection is also useful even in the case where the dimensionality
of the covariates is large or grows with the sample size (i.e., high-dimensional settings, see Li
and Lin, 2010). Finally, the use of Bayesian methods guarantees that, even with a selection
step, inference is simple not only for the estimated parameters, but also for functions of interest
computed from these parameters. These include quantities such as average partial effects (APE)
in reduced form models or price and income elasticities after estimation of a demand system.

The paper proceeds as follows. The next section introduces the specification of a parametric
likelihood constructed using copulas in two different ways. The properties of the resulting maxi-
mum likelihood estimators are then analyzed. Section 3 introduces the class of prior distributions
for the coefficients of the conditional mean and outlines the Bayesian estimation algorithm. Nu-
merical exercises in Section 4 showcase the properties and flexibility of these estimators, as well
as their comparison with other methods available in the literature. Section 5 presents an ap-
plication of the proposed methods to the demand of transportation services in Canada from a
structural demand system perspective. Section 6 presents the concluding remarks.
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2 Methodological Framework

Existing methods for estimating models with compositional outcomes can be broadly catego-
rized into transformation and (possibly quasi-) likelihood-based methods. The former operate
by taking the shares in the simplex space Sd to an unrestricted domain and then fitting a re-
gression on the transformed outcomes. Aitchison (1982, 1983) considers a multivariate normal
distribution on the additive log-ratio transformation of the share system, resulting in a seem-
ingly unrelated regression (SUR) framework with transformed outcomes (Zellner, 1962; Allenby
and Lenk, 1994). More general transformations have been considered in the literature and in-
clude the centered log-ratio (Aitchison, 1983), isometric log-ratio (Egozcue et al., 2003), and α
(Tsagris et al., 2011) transformations. The problem with using these methods in econometric
modeling is that they induce properties that complicate the recovery of the conditional mean of
Y on X. As noted previously, this is the object of interest in a regression framework and can-
not be obtained after these transformations unless implausibly strong assumptions are imposed,
even in the simpler univariate case (see, e.g., Papke and Wooldridge, 1996).

The latter likelihood-based methods impose certain distributional assumptions — which may
or may not need to be correctly specified (Montoya-Blandón and Jacho-Chávez, 2020) — to esti-
mate the coefficients associated with the variables in a regression framework using link functions
(see, e.g., Papke and Wooldridge, 1996, 2008). These include multivariate normal (Barten, 1969;
Woodland, 1979), Dirichlet (Hijazi and Jernigan, 2009) and fractional multinomial (Mullahy,
2015; Murteira and Ramalho, 2016) regression models. The methods in this paper stand be-
tween full distributional assumptions and the quasi-likelihood approach. In particular, the few
distributions that can fit data directly on Sd tend to have restrictive dependence structures be-
tween variables, such as having all pairwise correlations be negative in the case of the Dirichlet
distribution. Additionally, while efficient if correctly specified, they are not guaranteed to be
consistent if the distributional assumption fails. On the other hand, quasi-likelihood estimation
remains consistent while sacrificing efficiency.1 Not having a correctly-specified likelihood also
precludes the use of the Bayesian approach and its advantages. This is why this paper combines
copulas — expanding the possible dependence structure allowed between shares while adding
robustness — with a full-likelihood approach in order to take advantage of Bayesian methods
in estimation, selection and inference.

2.1 Likelihood and Identification

The rest of this section outlines the construction of the likelihood function using marginal
distributions on a bounded support, which are then combined via copulas. This is done in
a way that respects the unit-sum constraint and imposes the conditional mean specification.
Let (Y ′,X ′)′ be a (d + p)-dimensional random-vector, where Y = (Y1, . . . , Yd)

′ takes values
on Sd and X has support X ⊂ Rp. Let H denote the true joint distribution of (Y ′,X ′)′ and
PX denote the marginal distribution of the covariates. Additionally, let HY |X denote the true
conditional joint distribution of Y given X = x and HYj |X denote the associated conditional
marginal distributions for j = 1, . . . , d. For notational convenience, these will be written as H
and Hj, respectively, with their conditional nature made clear within their arguments. Each

1Some efficiency could be recovered by imposing higher-order moment conditions (Gourieroux et al., 1984;
Mullahy, 2015).
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marginal distribution satisfies the fractional restriction; i.e., Hj(yj|X = x) = 0 if yj < 0 and
Hj(yj|X = x) = 1 if yj > 1 for each j = 1,. . . , d and almost all x ∈ X . As mentioned previously,
the following conditional mean specification is assumed to hold throughout.

Assumption 1. The joint distribution of (Y ,X) satisfies

E[Yj|X = x] = mj(x,β0) , (1)

for almost all x ∈ X , someK-dimensional β0 ∈ B ⊂ RK , and known functionsmj : Rp×Rk → R,
such that 0 < mj(x,β) < 1 for all x and β, j = 1, . . . , d.

Note that this is a restriction on the family of conditional marginal distributions of Y . In
order to obtain sensible predictions, one should place an additional unit-sum constraint on the
expectations:

∑d
j=1 mj(x,β) = 1. The following examples present a couple of popular functional

forms in both structural and reduced form models that satisfy Assumption 1.

Example 1. (Demand Estimation) As noted before, the almost ideal demand (AID) system is
a popular model in demand estimation with a conditional mean specification m(x,β) given by

mj(x,β) = αj +
d∑
l=1

γjl log pl + πj

{
log e− α0 −

d∑
l=1

αl log pl −
1

2

d∑
k=1

d∑
l=1

γkl log pk log pj

}
(2)

for all j = 1, . . . , d, where β = (α0, . . . , αd, π1, . . . , πd, γ11, . . . , γdd)
′ are the structural param-

eters and x = (e,p′)′, so that the covariates represent total expenditures and prices. Addi-
tionally, the following cross-equation restrictions are imposed to satisfy homogeneity of degree
zero in prices and total expenditure, as well as a symmetric Slutsky matrix:

∑d
j=1 αj = 1,∑d

j=1 πj =
∑d

j=1 γjl =
∑d

j=1 γlj = 0 and γjl = γlj. Other demand systems exist, which extend
the theoretical properties and provide a better fit to the data. The most popular in the literature
are the quadratic AID (Banks et al., 1997), Minflex Laurent (Barnett, 1983; Barnett and Lee,
1985), and recently the exact affine Stone index (Lewbel and Pendakur, 2009). After estimating
these models, price elasticities and other quantities of interest are computed for which standard
errors are required. Demand systems also generally admit a fully linear approximation that
reduces each component of m(x,β) to an identity link on a single-index. All of these models
rely on imposing parameter restrictions to satisfy the unit-sum constraint, while not imposing
the fractional constraint of the outcomes.2

Example 2. (Reduced Form) A model that specifies each component of m(x,β) as a link
function on a single-index can also arise from several different contexts. It is commonly used
when a researcher wants to explore the relationship between covariates and outcomes with no
particular structural justification in mind. However, these specifications also arise from some
structural frameworks when additional assumptions are imposed (Considine and Mount, 1984;
Dubin, 2007). For example, a model could take the form of a multivariate fractional logit
(Mullahy, 2015):

mj(x,β) =


exp(x′βj)

1+
∑j−1

l=1 exp(x′βl)
for j = 1, . . . , d− 1 ,

1

1+
∑j−1

l=1 exp(x′βl)
for j = d ,

(3)

2The fractional constraint also guarantees positivity, a restriction that is generally ignored or checked only
after estimating a particular demand system, and is not imposed in the estimation process.
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where β = (β′1, . . . ,β
′
d−1)′. Perhaps more interesting in these types of nonlinear models is the

average partial effect of variable k on outcome j, given by ∂ E[Yj|X = x]/∂xk . Inference about
this object is thus of great importance in an applied setting.

An application of Sklar’s (1959) theorem allows for a representation of H using copulas as
H(y1, . . . , yd|X = x) = C(H1(y1|X = x), . . . , Hd(yd|X = x)), where C(·) is a copula function
linking together the conditional marginals with x common across all distributions. The following
assumption on the underlying distributions will be important.

Assumption 2. The marginals Hj, j = 1, . . . , d and the copula C admit density functions
conditional on X = x, which are denoted by hj, j = 1, . . . , d and c, respectively.

Given Assumption 2, the conditional joint density h(y1, . . . , yd|X = x) is well-defined as is
the unconditional density. Modeling can then take place in two steps. First, marginals Fj are
selected for each outcome yj, j = 1, . . . , d from the general class of distributions on the unit
interval that satisfy Assumption 1 (denoted here as F). Then, a copula CY can be chosen from
class C. Taking a parametric stance on the definition of the copula, the conditional joint can be
expressed as

F1,...,d(y|X = x; δ,ψ) = CY (F1(y1|X = x; δ1), . . . , Fd(yd|X = x; δd);ψ) , (4)

where δ = (δ′1, . . . , δ
′
d)
′ ∈ ∆ are the parameters that govern the marginal distribution of each

component and ψ ∈ Ψ defines the dependence structure between the variables in the copula.
These parameters are defined on the spaces ∆ = ×dj=1∆j ⊂ RD

j , where Dj is the dimensionality
of each δj, j = 1, . . . , d, and Ψ ⊂ RS. However, note that some issues arise when dealing
directly with the object defined by (4) in this context. Due to the nature of the simplex, there
is a redundancy in the sense that one of the variables can always be obtained from the others
(Murteira and Ramalho, 2016; Elfadaly and Garthwaite, 2017). To illustrate this fact, take d as
a base category and let W = Y1 + · · ·+ Yd−1. The distribution of Yd will then be given by

Fd(yd|X = x) = 1− FW (1− yd|X = x) , (5)

where

FW (w|X = x) = lim
wj→∞,j=2,...,d−1

Pr(Y1 + · · ·+ Yd−1 ≤ w, Y2 ≤ w2, . . . , Yd−1 ≤ wd−1|X = x) .

This probability is taken over the joint distribution of (Y1, . . . , Yd−1)′ conditional on X = x,
which could be obtained from a second application of Sklar’s theorem.3 Thus, Fd is completely
determined by the remaining components and a likelihood function based on this joint distri-
bution would be constant with respect to δd. As identifiability is a property of the likelihood,
this implies that δd would not be identifiable separately from (δ′1, . . . , δ

′
d−1)′. In a frequentist

context, nothing else could be said about this remaining component. However, in a Bayesian
framework, if there was some prior information linking (δ′1, . . . , δ

′
d−1)′ and δd together, it could

be possible to achieve a posterior updating of δd conditional on the data (Poirier, 1998).

3This particular formula arises by considering the inverse transformation Y1 = W − Y2 − · · · − Yd−1, Y2 =
V2, . . . , Yd−1 = Vd−1 and obtaining the marginal for W . Similar formulas would set Yj = W − Y1 − · · · − Yj−1 −
Yj+1 − · · · − Yd−1 for some j in 1, . . . , d− 1 and integrate over the remaining components.
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As an example of this identification failure, consider specifying a Gaussian copula with
Gaussian marginals (forgetting for a moment about the fractional restriction). The unit-sum
constraint that yields (5) would imply a singular covariance matrix between the components
of Y . In a demand estimation context, Barten (1969) explores these effects, showing how
to perform maximum likelihood estimation (MLE) of the parameters of the resulting demand
system by eliminating one of the equations.

This paper considers two ways of imposing a copula on a D-dimensional object with D ≡
d − 1 in a way that both the unit-sum constraint from the simplex and the conditional mean
specification in (1) are satisfied. For this reason and to simplify notation, some D-dimensional
objects will be used interchangeably with their d-dimensional counterparts, but their distinctions
will be made clear when necessary.

2.1.1 Copula Specification on Y

Consider placing a copula similar to (4) except that the object of interest is the D-dimensional
vector Y−d = (Y1, . . . , YD)′, where the d-th component is taken as the base and is thus eliminated:

F (y−d|X = x; δ,ψ) = CY (F1(y1|X = x; δ1), . . . , FD(yD|X = x; δD);ψ) . (6)

Now, while identification is no longer an issue, there is still the fact that F has support on
[0, 1]D. That is, it places some probability outside of the set T = {(y1, . . . , yD) ∈ RD : 0 ≤
yj ≤ 1, j = 1, . . . , d;

∑D
j=1 yj ≤ 1}, so that it does not correspond to a valid distribution on Sd

after marginalizing the last component. Additionally, generating values from the distribution in
(6) would yield draws that do not satisfy the unit-sum constraint with some probability. The
amount of density placed outside of T depends on the distribution of W as previously defined.
The following proposition gives the details of the general case from (5). All proofs can be found
in Appendix A.

Proposition 1. The cdf of W = Y1 + . . .+ YD conditional on X = x, δ, and ψ is given by

FW (w|X = x; δ,ψ) =

∫ w−D+l

0

∫ w−D+l−yD

0

· · ·
∫ w−D+l−

∑D
k=D−l+2 yk

0

∫ 1

0

· · ·
∫ 1

0

dF (y1, . . . , yD−l, yD−l+1, . . . , yD−1, yD|X = x; δ,ψ) ,

(7)

when w ∈ (D − l, D − l + 1] for l = 1, . . . , D.

Based on this characterization, we can find Pr(Y−d ∈ T |X = x; δ,ψ) = FW (1|X = x; δ,ψ).
Under the following assumption, it is possible to obtain a density on Y−d given by the truncation
of the copula density to the set T .

Assumption 3.A. The marginals Fj, j = 1, . . . , D and the copula CY admit density functions
conditional on X = x, which are denoted by fj, j = 1, . . . , D and cY , respectively.

Then, by Assumption 3.A,

f(y−d|X = x; δ,ψ; T ) =

{
f(y−d|X=x;δ,ψ)

FW (1|X=x;δ,ψ)
if y−d ∈ T ,

0 if y−d /∈ T ,

= I(y−d ∈ T )
f(y−d|X = x; δ,ψ)

FW (1|X = x; δ,ψ)
, (8)
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where I(·) is the indicator function that takes the value of 1 if its argument is true and 0
otherwise. The nontruncated density is given by

f(y−d|X = x; δ,ψ) = cY (F1(y1|X = x; δ1), . . . , FD(yD|X = x; δD);ψ)
D∏
j=1

fj(yj|X = x; δj) .

While this method of constructing a likelihood function satisfies the conditional mean specifi-
cation and unit-sum constraints, the possibly high-dimensional integral can be a complicated
computation. Some algorithms, such as the AEP of Arbenz et al. (2011), are devised for the
specific purpose of approximating the integral in (7). This is used in the numerical implemen-
tation of the algorithm to drastically reduce the computational burden compared to general
multivariate integration or Monte Carlo methods.

2.1.2 Copula Specification on Z

With the drawbacks outlined in the previous subsection, a second way of constructing a like-
lihood is considered here that does not suffer from such computational complexity. This is
achieved by introducing a transformation step for the vector Y in order to impose more struc-
ture. Most transformations mapping Sd to Rd or Rd−1 have an inverse mapping with a closure
structure; i.e., they take each vector component and divide it by the sum of the whole vec-
tor. The resulting ratios make it so that recovering the conditional mean E[Y |X = x] from
the transformation is complicated and entails strong and implausible assumptions (Papke and
Wooldridge, 1996). In contrast, this paper employs a transformation that has a multiplicative
structure for the inverse mapping. That way, it is possible to obtain the conditional mean for
Y on X. Assuming that Yd is selected as the base variable again, the so-called stick-breaking
transformation (Connor and Mosimann, 1969) is used to produce new variables Z1, . . . , Zd, such
that

Z1 = Y1, Zj =
Yj

1−
∑j−1

l=1 Yl
for j = 2, . . . , d− 1, and Zd = 1 . (9)

This mapping is denoted as s(Y ) = (s1(Y ), . . . , sD(Y ))′, where Zj = sj(Y ) for j = 1, . . . , D.
Note that after this transformation, Zd becomes fixed, which once again highlights the redun-
dancy problem in the original Y vector: it can be transformed into a lower-dimensional vector
without sacrificing information. Here, it is important to note that although any category can be
chosen as a base, subsequent analyses will depend on this base category. However, this failure to
be permutation invariant is generally not viewed as an issue in most of the econometric literature
as long as it is taken into consideration (Mullahy, 2015; Murteira and Ramalho, 2016).

Additionally, observe that Z = (Z1, . . . , ZD)′ takes values in [0, 1]D. Thus, placing a copula
structure on Z analogous to (6) would not need to be truncated as it would always satisfy the
unit-sum constraint of the original Y for any marginals and dependence structure. Therefore,
the following distribution is considered:

G(z1, . . . , zD|X = x;ω, ξ) = CZ(G1(z1|X = x;ω1), . . . , GD(zd|X = x;ωD); ξ) , (10)

where ω = (ω′1, . . . ,ω
′
D)′ ∈ Ω are the marginal parameters and ξ ∈ Ξ are the copula parameters.

Here, similar to (6), Gj, j = 1, . . . , D are marginals respecting the fractional constraint, Ω =
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×Dj=1Ωj with each Ωj ⊂ RO
j , and Ξ ⊂ RS. In order to satisfy the conditional mean specification

in (1), the restrictions given by the following proposition must be imposed on the conditional
means of Z.

Proposition 2. There exist conditional mean functions E[Zj|X = x] ≡ µj(x;β,ω, ξ) such that
the conditional mean for Y on X satisfies Assumption 1. In particular, any such objects that
are a solution to

µj(x;β,ω, ξ) +
E
[
Z̃j
∏j−1

l=1

(
1− Z̃l − µl(x;ω, ξ)

) ∣∣∣X = x
]

1−
∑j−1

l=1 ml(x,β)
=

mj(x,β)

1−
∑j−1

l=1 ml(x,β)
(11)

will satisfy E[Yj|X = x] = mj(x,β), where Z̃j ≡ Zj − E[Zj|X = x].

Thus, by Proposition 2, we can sequentially find the conditional mean for Z in a way that
imposes Assumption 1. This means that by setting up the moments of Z in a specific way, the
copula would place a dependence structure on Y that is flexible and satisfies all the requirements
for a multivariate fractional response model. This, of course, requires the existence of the
necessary moments for a given copula CZ . The challenging part of applying Proposition 2 comes
from computing these cross-moments of Z. However, in an important special case, given by the
elliptical copulas with correlation matrix R, such as the Gaussian or t copulas, it is possible to
show that all cross-moments depend only on the elements of R. This is due to Wick’s theorem
for elliptical distributions (Frahm et al., 2003) and the consequences are explored in the following
example.

Example 3. (Gaussian Copula) Take a system with d = 3 shares and let CZ be a Gaussian
copula with correlation parameter ξ. Additionally, let both Z1 and Z2 have beta marginals
in a mean-precision parameterization with precisions φ1 and φ2, respectively. Write µj ≡
µj(x;β,ω, ξ). Then, E[Z̃1Z̃2|X = x] = ξ

√
Var(Z1|X = x)Var(Z2|X = x) and the variance

of a beta distribution in this parameterization is given by Var(Zj|X = x) = µj(1−µj)/(1+φj).
Equation (11) would then take the form µ1 = m1(x,β) for j = 1. For j = 2, it reduces to
µ2 − b

√
µ2(1− µ2) = c, where b ≡ (ξ/

√
(1 + φ1)(1 + φ2))

√
µ1/(1− µ1) and c ≡ m2(x,β)/[1−

m1(x,β)]. This has the solution

µ2 =
b2 + 2c± b

√
b2 + 4c(1− c)

2(b2 + 1)
,

which exists in the real unit interval as long as c < 1, which in itself is guaranteed by the
unit-sum constraint of the conditional mean functions mj(·), j = 1, . . . , d. In this setting, we
have ω1 = (µ1, φ1) and ω2 = (µ2, φ1). This yields (1) for the Y transformed via the inverse
transformation (A.1).

This way of introducing dependency from the underlyingZ to Y is quite flexible. Proposition
2 acts in a similar way to a method of moments approach; i.e., given the copula structure in (10),
the moments of Z are chosen to match those of Y . Thus, it is also possible to have additional
moments of each Yj be matched by those of the underlying marginals. The parameters in
this construction are then also written as δ. This implicit relationship depends on both the
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marginal and copula parameters and is denoted by δ = v(x;β,ω, ξ). In a practical application,
a researcher might only want to match the marginal moments of each Yj and not impose a full
copula structure. In this case, one could assume the Z to be independent of each other, reducing
the conditional means to

µj(x;β,ω, ξ) =
mj(x,β)

1−
∑j−1

l=1 ml(x,β)
.

The other marginal moments can be matched given the simplification of independence. Even by
assuming this independence copula, the resulting Y are still correlated, although the patterns of
this correlation are reduced. Consider again Example 3 but with Z assumed to be independent.
If independent beta marginals are combined in this way, it is possible to recover the generalized
Dirichlet distribution on Y , which is a more flexible alternative to the Dirichlet used in practice
(Connor and Mosimann, 1969).

As the Jacobian of the stick-breaking transformation is given by
∏D

j=1 1/(1−
∑j−1

l=1 Yl), the
next assumption, which mimics Assumption 3.A, yields a distribution for Y .

Assumption 3.B. The marginals Gj, j = 1, . . . , D and the copula CZ admit density functions
conditional on X = x, which are denoted by gj, j = 1, . . . , D and cZ , respectively.

Then, by Assumption 3.B and a change of variables from Z to Y ,

g(y|X = x; δ, ξ) = g(s(y)|X = x; δ, ξ)

= cZ(G1(s1(y)|X = x; δ1), . . . , GD(sD(y)|X = x; δD), ξ)×
D∏
j=1

gj(yj|X = x; δj)

1−
∑j−1

l=1 Yl
.

(12)

2.2 Frequentist Estimation and Asymptotic Properties

While the ultimate goal of this paper is to construct Bayesian estimators based on the joint
distributions introduced in the previous subsection, to the best of my knowledge, the frequentist
estimators have not been previously explored in the literature. Therefore, for completeness and
to present an alternative to existing methods, the asymptotic properties of these estimators are
derived in this subsection and prior specifications are postponed until the next section.

The following assumptions are introduced in order to construct a likelihood function from
both (8) and (12).

Assumption 4. There is access to an independent and identically distributed (i.i.d.) sample
of size n from the joint distribution of (Y ′,X ′)′, given by {(y′i,x′i)′}ni=1.

Define θY = (δ′,ψ′)′ and θZ = (δ′, ξ′)′. The associated log-likelihoods are then given by

`Y (θY ) =
1

n

n∑
i=1

{
log cY (F1(y1,i|X = xi; δ1), . . . , FD(yD,i|X = xi; δD);ψ)

+
d∑
j=1

log fj(yj,i|X = xi; δj)− logFW (1|X = xi; δ,ψ)

} (13)
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and

`Z(θZ) =
1

n

n∑
i=1

{
log cZ [G1(s1(yi)|X = xi; δ1), . . . , GD(sD(yi)|X = xi; δD); ξ]

+
d∑
j=1

log gj(sj(yi)|X = xi; δj)

}
,

(14)

where the Jacobian term in (14) is not included as it does not depend on θZ . Once these
likelihoods have been defined, a natural way to construct the estimators is

θ̂Y ≡ arg max
θY ∈∆×Ψ

`Y (θY ) and θ̂Z ≡ arg max
θZ∈∆×Ξ

`Z(θZ) . (15)

The following assumptions guarantee identification and introduce correct specification of the
marginals and copulas.

Assumption 5. (Identification)

1. Fj and Gj are absolutely continuous and globally identified for j = 1, . . . , D and the same
is true for CY and CZ ;

2. For j = 1, . . . , D (i) if mj(x,β1) = mj(x,β2) for almost all x ∈ X then β1 = β2, and (ii)
X must be such that Image(mj) = Range(mj).

Assumption 6.A. (Correct specification) (i) There exists ψ0 ∈ Ψ and δ0 = (δ′0,1, . . . , δ
′
0,D)′ ∈

∆, such that h(·|X = x) = f(·|X = x; δ0,ψ0) for almost all x ∈ X ; (ii) Similarly, there exists
ξ0 ∈ Ξ and ω0 ∈ Ω, such that h(·|X = x) = g(·|X = x; δ0, ξ0) for almost all x ∈ X , where
δ0 = v(x;β0,ω0, ξ0).

While identification of δ depends solely on the marginals, the dependence structure parameter is
more sensitive to discontinuities. In particular, this identification can be compromised when the
covariates do not allow a wide range of the [0, 1]-domain to be covered in the regression structures
exploited in this paper (Genest and Nešlehová, 2007; Trivedi and Zimmer, 2017). Point masses on
the marginal distributions could potentially be accommodated by robust correction techniques
(Mart́ın-Fernández et al., 2003) or in a Bayesian setting by data augmentation (Smith and
Khaled, 2012). All link functions usually considered in the literature satisfy Assumption 5.2.(i).
These include functions on a single-index or those including additional parameters in reduced
form models, such as the nested logit or dogit models (Murteira and Ramalho, 2016). A simple
way to guarantee 5.2.(ii) is to have a continuous regressor with unbounded support and a nonzero
coefficient associated with it.

Combining all previous assumptions with the standard regularity conditions (see Appendix
B and White, 1982) leads to one of the main results of the paper.

Theorem 1. Under Assumptions 1–6.A and regularity conditions R1–R6, the resulting esti-
mators θ̂Y and θ̂Z are consistent and asymptotically normal; i.e., for e ∈ {Y, Z}, θ̂e

p→ θe,0,
and √

n(θ̂e − θe,0)
d→ N (0, I−1(θe,0)) , (16)

where I(θe,0) = −E[∂2`(θe,0)/∂θe∂θ
′
e ] is the Fisher information matrix at the true parameter

vector.
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Inference is easily obtained by plugging in −∂`(θ̂e)/∂θe∂θ′e as an estimator for I(θe,0), where
e ∈ {Y, Z}. Now, as the focus of the paper is estimating the coefficients associated to the
conditional mean, the full strength of Assumption 6.A is not necessary to obtain consistency and
asymptotic normality of the estimator from the copula on Y . A modified version of Assumption
6.A is introduced next.

Assumption 6.B. (Possibly misspecified copula) There exists δ0 = (δ′0,1, . . . , δ
′
0,D)′ ∈ ∆ such

that Hj(·|X = x) = Fj(·|X = x; δ0,j) for all j = 1, . . . , d and almost all x ∈ X . However,
C(·) 6= CY (·;ψ0) for all ψ0 ∈ Ψ.

The following lemma will be useful in proving an analog to Theorem 1 that uses Assumption
6.B instead of 6.A. It presents a decomposition of the Kullback-Leibler (KL) divergence when
dealing with copula estimation, where the KL divergence between two distributions h and f ,
indexed by some parameter vector θ, is defined as follows: KL(h, f ;θ) = Eh[log(h/f)], with Eh

denoting that the expectation is taken with respect to distribution h.

Lemma 1. (KL divergence for copula likelihoods) Under Assumptions 1–3.A and regularity
conditions R1 and R2, the KL divergence between the true distribution h, when f is defined by
(8), is given by

KL(h, f ;θY ) = Eh

[
log

c(H1(Y1|X = x), . . . , HD(YD|X = x))

cY (F1(Y1|X = x; δ1), . . . , FD(YD|X = x; δD);ψ)

]
+

D∑
j=1

KL(hj, fj; δj) + Eh

[
log

FW (1|X = x;θY )

I(Y ∈ T )

]
.

(17)

The main message from Lemma 1 is that the KL divergence can be decomposed into three parts:
the first term represents a measure of the divergence between the true and the assumed copula;
the second are the actual KL divergences between the true and assumed marginals; and the
third is the difference between the true and derived log-probability that y is in the set T . Using
this result, it is now possible to show that, as long as the marginals are correctly specified even
if the copula is not, the coefficients θY can be consistently recovered. In such a case, the δ̂
parameters in the marginals converge to their true counterpart, while the dependence structure
parameters ψ̂ converge to the pseudo-true values that minimize the KL divergence along that
dimension. In this sense, the proposed estimator is semiparametric with respect to the copula;
i.e., robust to copula misspecification.

Theorem 2. Under assumptions 1–3.A, 4–6.B and regularity conditions R1–R6, the resulting
estimator θ̂Y is consistent and asymptotically normal. In particular, δ̂

p→ δ0 and ψ̂
p→ ψ∗,

where ψ∗ is the value of ψ ∈ Ψ that minimizes the Kullback-Leibler divergence. Additionally,

√
n(θ̂Y − θ∗Y )

d→ N (0, I−1
h (θ∗Y )Jh(θ∗Y )I−1

h (θ∗Y )) , (18)

where θ∗Y =(δ′0,ψ
∗′)′ is the pseudo-true value, Ih(θ∗Y ) = Eh[∂

2 log f(yi|X = xi;θ
∗
Y ; T )/∂θY ∂θ

′
Y ]

and Jh(θ∗Y ) = Eh[∂ log f(yi|X = xi;θ
∗
Y ; T )/∂θY · ∂ log f(yi|X = xi;θ

∗
Y ; T )/∂θ′Y ].

12



Theorem 2 is a specialization of the results in White (1982), tackling misspecified maximum
likelihood estimation, and thus expected values are taken with respect to the true underlying
joint distribution h. This result represents an additional advantage in this context, as some cop-
ulas have a truncation probability, FW (1|X = x; δ,ψ) in (13), which is easier to compute than
others. Using these copulas will still recover the underlying marginal parameters while ensuring
that the dependence parameters are consistent to a meaningful counterpart; the computational
burden is therefore reduced. Furthermore, in the copula estimation context, it is not generally
the case that Ih(θ∗Y ) has a block-diagonal structure, so that the full sandwich estimator is neces-
sary to conduct inference regarding β. Consistent estimators of these matrices can be computed
in a standard fashion by using

Îh(θ̂Y ) =
1

n

n∑
i=1

∂2 log f(yi|X = xi; θ̂Y ; T )

∂θ∂θ′
,

Ĵh(θ̂Y ) =
1

n

n∑
i=1

∂ log f(yi|X = xi; θ̂Y ; T )

∂θ
· ∂ log f(yi|X = xi; θ̂Y ; T )

∂θ′
.

(19)

It is also simple to see why Theorem 2 does not apply to the estimator based on the copula
on Z. As Proposition 2 shows, the marginal parameters depend on the underlying copula
parameters ξ via δ = v(x;β,ω, ξ). If no ξ ∈ Ξ allows for a correct specification of the copula,
the inferred relationship cannot reflect the correct marginal structure. The preceding theorems
introduce a trade-off in the empirical analysis of copulas for demand estimation or reduced form
models. While the estimator of the copula on Y is robust to copula misspecification, it is more
expensive to compute. On the other hand, placing a copula on Z, particularly an elliptical
copula, creates an easier to compute model; however, it might be biased for computing the
coefficients of interest. This trade-off is explored numerically in Section 4 using Monte Carlo
simulations.

This theorem also presents a powerful result whose proof is generally applicable to copula
estimation: correct marginals with misspecified dependence structure still leads to consistent
and asymptotically normal estimators. The result is formally stated in the next corollary.

Corollary 1. Let the support of Y be RD instead of Sd. Under Assumptions 2, 3.A, 4, 5.1,
6.B and regularity conditions R1–R6, an estimator θ̂ = (δ̂′, ψ̂′)′ based on (13) (without the
truncation probability) is consistent and has an asymptotically normal distribution as in (18).

This is a potentially overlooked result in the copula estimation literature, as most attention is
centered on correctly modeling the dependence structure without focusing on the marginals.4

Corollary 1 presents a contrasting view: if the attention is shifted to the marginals, the copula
specification parameters become nuisance parameters and the marginals can be recovered.

The estimators introduced in this paper cover several important cases in the literature.
Several marginals can be chosen such that the regression structure given in (1) is preserved.
Examples include the beta with a reparametrization (Ferrari and Cribari-Neto, 2004; Simas
et al., 2010), simplex (Song and Tan, 2000; Liu et al., 2020), truncated normals, and skew-
normals (Mart́ınez-Flórez et al., 2020). Furthermore, there are many methods to create new

4This view is one usually found in most financial or actuarial applications, while the opposite tends to be true
in economics and econometrics (Charpentier et al., 2007; Trivedi and Zimmer, 2007).
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Figure 1: Dependence Patterns in Copulas
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Note: (a) Beta marginals with δ1 = (0.5, 10), δ2 = (0.5, 10) and a normal copula with ψ = −0.5; (b)
Beta marginals with δ1 = (0.7, 10), δ2 = (0.2, 10) and a normal copula with ψ = −0.5; (c) Simplex
marginals with δ1 = (0.5, 1), δ2 = (0.5, 1) and a normal copula with ψ = 0.5; and (d) Beta marginals
with δ1 = (0.8, 10), δ2 = (0.8, 10) and a FGM copula with ψ = −0.5.

distributions on the unit interval that satisfy this restriction (Rodrigues et al., 2020). Some
distributions can even be made to handle point masses at the extremes to deal with boundary
values that can occur in the data and that can be hard to introduce into a parametric analysis
(Papke and Wooldridge, 1996; Mart́ın-Fernández et al., 2003; Smithson and Shou, 2017). Once
these marginals are selected, general copulas can be used to link them in a flexible way. As an
example of this flexibility inherent to the copula approach, Figure 1 plots the densities under
several configurations of marginals, copulas, and their parameters, obtaining a wide array of
possible distributional shapes.

Example 1. (Continued) Now, as one of the objectives of the paper is to be able to deal with
the type of cross-equation restrictions that arise in the estimation of demand systems, it will be
useful to consider the more general estimator for e ∈ {Y, Z} given by

θ̃ ≡ arg max
θe∈Θe

`e(θ)

subject to Aβ = a and Bβ ≤ b ,
(20)

where ΘY = ∆×Ψ and ΘZ = ∆×Ξ. Implementation of these types of (possible) cross-equation
restrictions is simple in the full-likelihood estimation case. This is in contrast to the alternative
two-step approach known in the literature as inference functions for margins (IFM), which first
estimates δ and then ψ or ξ (Joe and Xu, 1996). Imposition of cross-equation restrictions in
this framework is complicated and usually leads to larger efficiency losses (Joe, 2014). However,
an issue with the full estimator is numerical instability. The Bayesian approach can further aid
in this issue, as the introduction of prior information usually leads to posteriors that are less
flat than the likelihood in the regions of the parameter space that are of interest.5

5This property of Bayesian methods have made them very popular in macroeconomic modeling (see, e.g.,
Sims and Zha, 1998).
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3 Priors and Variable Selection

Armed with the likelihood function, prior distributions on the parameters can be imposed to
carry out Bayesian estimation, which produces posterior distributions for θ. Inference then fol-
lows from a measure of uncertainty or from credible sets of these posterior distributions. Model
selection in a traditional sense would follow from the same probability rules and yield posterior
model probabilities that could be used for both selection and averaging. Instead, the objective of
this paper is to further augment the proposed estimators to handle covariate selection by intro-
ducing regularization. This is done to leverage recent results on Bayesian analogs of the LASSO
and related estimation methods (Tibshirani, 1996). Furthermore, the Bayesian framework al-
lows the researcher to obtain statistical inference through simple numerical methods. Such a
framework would be useful even in contexts where the dimensionality of the covariate space is
large or grows with sample size, as occurs in high-dimensional settings (Li and Lin, 2010). In
demand estimation, this could correspond to approximating the indirect utility or cost func-
tions to an arbitrarily large degree of precision using polynomials and interaction terms, which
can aid the performance and economic regularity of the resulting models (Chang and Serletis,
2014). Additionally, a researcher would need to obtain inference on functions of the parameters,
such as the price elasticities in demand estimation or average partial effects in reduced form
models. Frequentist methods rely on the Delta method or variants of bootstrapping to produce
this inference, but they are either computationally complex or not supported theoretically.6 On
the other hand, Bayesian methods can produce inference for these objects at no real additional
computational cost apart from the estimation itself.

The driving idea behind this framework is that regularization can be applied to any globally
convex function, such as the negative of the log-likelihoods given in (13) and (14) (Zou and
Hastie, 2005; Tibshirani et al., 2012). Thus, to automatically include a selection step, the
objective function could be augmented to solve

arg min
θe∈Θe

{−`e(θe) + ρλ(β)} , (21)

where the covariates are now assumed to be standardized and ρλ(β) is a penalization term of the
regression coefficients that is indexed by a vector of regularization parameters λ = (λ1, . . . , λM)′.
It is assumed that only the β or a subset of them are penalized, as these coefficients directly
interact with the covariates to define the conditional mean.

Example 4. (LASSO and group LASSO) Useful forms of the penalty could be given by

ρλ(β) = λ||β||1 or ρλ(β) = λ
L∑
l=1

||βl||2 , (22)

where β = (β′1, . . . ,β
′
L)′ so that there is a partition of the coefficient vector into L groups and

|| · ||1 and || · ||2 are the L1 and L2 norms in Euclidean spaces, respectively. The first penalty
is the usual LASSO, whereas the second takes the form of the group LASSO (Yuan and Lin,
2006).

6For example, Koch (2015) and Mullahy (2015) deal with inference on the average partial effects for the
multivariate fractional logit by using different kinds of bootstrap methods. However, the validity of these
bootstrap methods is never assessed.
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While frequentist methods can be used to solve (21), a Bayesian solution to this problem
is still attractive. Frequentist penalization methods act such as LASSO act by simultaneously
imposing shrinkage and selecting relevant features. The Bayesian framework can also naturally
impose shrinkage into estimation by virtue of prior information. Recent literature shows how
this pattern of Bayesian shrinkage can replicate those introduced by LASSO or its alternatives
and how selection can be achieved (Park and Casella, 2008; Li and Lin, 2010; Leng et al.,
2014). The connection between both methods was recognized at the onset of the penalized
regression literature and the introduction of the LASSO, which can be obtained from a Bayesian
interpretation (Tibshirani, 1996; Ročková and George, 2018).

However, the main consideration for adopting a Bayesian framework is its ability to obtain in-
ference through simple probabilistic concepts (Kyung et al., 2010). Frequentist methods initially
focused on fast coefficient estimation and tuning of the penalty parameters, but were generally
unsuited for inference due to their nonstandard limiting distribution (Knight and Fu, 2000).
Advancements in the literature have introduced different ways to circumvent this issue. These
include approximations to the objective function (Tibshirani, 1996; Osborne et al., 2000; Wang
and Leng, 2007), bootstrap (Knight and Fu, 2000; Hansen and Liao, 2019), use of nonconcave
penalties (Fan and Li, 2001; Ning et al., 2017), inversion of Karush-Kuhn-Tucker conditions (also
known as “desparsification”, Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang
and Zhang, 2014; Breunig et al., 2020), post-selection inference (Belloni et al., 2014, 2016; Lee
et al., 2016), and double or debiased machine learning (Athey et al., 2018; Chernozhukov et al.,
2018).7 Most of these advancements involve linear regression and instrumental variable mod-
els, while some cover up to generalized linear models, which provide sufficient structure to the
problem (Fan and Tang, 2013; Ning et al., 2017). The regression structure with the likelihood
functions considered in this paper do not fall into these categories. Furthermore, the necessary
technical conditions to adapt some of the previous methods that are sufficiently general to cover
this setting are still unknown and left for future research. A Bayesian specification, on the other
hand, is easy to establish without additional technical considerations and provides statistical
inference as a by-product of the estimation algorithm. Additionally, the Bayesian framework
can attach uncertainty to the estimates of nonselected variables — those estimated to be 0 —
whereas this cannot be done satisfactorily under most methods in the frequentist approach.
While this paper implements model selection by using the class of priors defined below in (23),
several alternatives exist within the Bayesian literature (Chipman et al., 2001; Ishwaran and
Rao, 2005; Yuan and Lin, 2006; Yen, 2011; Ročková and George, 2018).

To complete a Bayesian specification of the problem, this paper considers a general class of
priors that implement regularization in an analog way to the usual frequentist solutions. For
simplicity, it is assumed hereafter that the marginals can be entirely described, conditional on
X, by using the vector of coefficients β and precision parameters φ = (φ1, . . . , φD) ∈ Φ ⊂ RD.
That is, we can write δj = (β′, φj)

′ for all j = 1, . . . , d, or δ = (β′,φ′)′. The φ are precision
parameters such that for a fixed mean, larger φ imply smaller variances and as φ → ∞, the
distribution degenerates to the mean value (Ferrari and Cribari-Neto, 2004). This is the case
for all marginal distributions considered in the paper.

Most work on adapting the LASSO-type estimators to a Bayesian context shows that, essen-

7Double machine learning methods are also connected to resampling ideas, which can be given a Bayesian
interpretation (Smith and Gelfand, 1992).
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tially, different penalties are implemented by changing the priors in a systematic way (Park and
Casella, 2008; Hans, 2009; Kyung et al., 2010). Furthermore, different representations of the
Bayesian interpretation of the priors alters both the theoretical and computational properties of
the solutions. This idea leads to the following general class of priors π(β) to handle estimation
and model selection in this framework:

π(β) ∝ exp
{
− 1

2
ρλ(β)

}
. (23)

Example 4. (Continued) For the penalties in (22), these priors can be implemented using a
hierarchical Bayesian approach. For a LASSO penalty, the following hierarchy achieves the
desired results:

β|τ1, . . . , τK ∼ NK(0, Dτ ), Dτ = diag(τ1, . . . , τK) ,

τk|λ2 ∼ Exponential

(
λ2

2

)
, k = 1, . . . , K ,

where NK represents a multivariate K-dimensional normal distribution, τ1, . . . , τK are hierarchi-
cal parameters, and diag(τ1, . . . , τK) represents a K×K diagonal matrix with the diagonal given
by its arguments. This hierarchical structure borrows from the linear regression framework, but
its properties hold remarkably well in these nonlinear settings (Park and Casella, 2008). For the
group-LASSO penalty, a similar structure can implement this prior distribution:

βl|τl ∼ NLl
(0, τlILl

), l = 1, . . . , L ,

τl|λ2 ∼ Gamma

(
Ll + 1

2
,
λ2

2

)
, l = 1, . . . , L ,

where Ll is the number of elements of each group, there are a total of L groups, and ILl
is the

identity matrix of order Ll (Kyung et al., 2010; Leng et al., 2014).

Thus, the complete specification would yield π(β,φ,ψ) = π(β)π(φ)π(ψ). Priors on φ
can be placed in a standard fashion for each precision parameter; say, by choosing a flat Jef-
frey’s prior, a Gamma distribution, or an adjusted Scaled-Beta2 distribution (Pérez et al., 2016;
Ramı́rez-Hassan and Montoya-Blandón, 2020). The prior on ξ, on the other hand, is dependent
on the class of copula functions considered. For example, for a Gaussian copula whose dependent
structure is characterized by a correlation matrix, a plausible prior could be given like the one
in Lewandowski et al. (2009). If d = 3 so that only D = 2 shares need to be modeled, the depen-
dence reduces to a single correlation parameter and flexible alternatives can be placed as priors,
such as a diffuse uniform distribution on the support [−1, 1] or (modified) beta distribution
(LeSage, 2004; Smith and Khaled, 2012). Additionally, in the Bayesian framework, the tuning
parameters λ can either be chosen by a suitable method such as the expectation-maximization
(EM) algorithm or they can be given hierarchical priors to remain fully consistent with the
paradigm. Given the complex nonlinear nature of the likelihood function constructed in this
paper, it becomes simpler to tune a hyperprior for λ. The most popular example sets a gamma
prior on λ2 for both LASSO and group-LASSO penalty parameters (Park and Casella, 2008;
Kyung et al., 2010). Finally, although constraints can be implemented in a frequentist solution
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to (21) as in Gaines et al. (2018), Bayesian constraints are also consistently implemented as
support restrictions on the prior distributions.8

Example 1. (Continued) There are meaningful ways in which sparsity and selection can play
a role in the estimation of structural demand models. Consider the matrix form of the AID
equations (2). Assuming that the expenditure and price variables are already defined in terms
of their logarithms, we can write ẽ ≡ e−α0−α′p−(1/2)p′Γp so thatm(x,β) = α+Γp+πẽ. One
could allow further flexibility into the model by allowing polynomials on ẽ of varying degrees,
such as Blundell et al. (1993), which includes a second degree term, or Lewbel and Pendakur
(2009), which empirically decide on including up to 5 terms.9 Incorporating these ideas, one
could in general write

m(x,β) = α+ Γp+
R∑
r=1

πrẽ
r , (24)

with β = (α0,α
′,Γ,π′1, . . . ,π

′
R)′. It is then apparent that choosing R is a model selection issue

that could be undertaken using the penalties in (22). The group LASSO penalty is particularly
suitable as one would naturally select or exclude together the d-dimensional vectors πr from all
equations.

Example 2. (Continued) In a similar fashion, the reduced form approach outlined in (3) could
benefit from the feature selection accomplished by the class of priors considered in this paper.
Letting the dimensionality p of the covariate vector x be large and assuming there are some
redundant variables that should be excluded from the model, the penalized model will be more
suitable. Furthermore, this setup also naturally lends itself to a grouped penalty structure, as
the coefficients associated to the same variable in different equations can be placed together to
form each group. Furthermore, if the goal is to introduce a correlation between the selected
coefficients in a more structured manner, the fused-LASSO penalty of Tibshirani et al. (2005)
could also be introduced. In all cases, λ controls the strength of the regularization imposed into
each penalty.

Based on previous considerations, the following steps summarize a way to estimate and
obtain inference for the Bayesian regularized copula regression model:

Step 1. Let F represent the class of marginal distributions satisfying the fractional and index
restrictions (1). Choose Fj, Gj ∈ F for all j = 1, . . . , D.

Step 2. Let CD represent a class of copula functions of dimension D. Choose CY , CZ ∈ C. To-
gether with the previous step, this allows us to find likelihood functions f(Y |X,β,φ,ψ)
and g(Y |X,β,φ, ξ) by (13) and (14).

Step 3. Choose a prior distribution π(θY ) and π(θZ) that belongs to the class outlined in (23).
If constraints of the form Aβ = a and Bβ ≤ b are present, the support of the prior
distribution should be modified to the set A such that these constraints hold. Include
a prior distribution for λ.

8For example, in the context of demand estimation, curvature can be imposed via support restrictions in the
AID model (Geweke, 1989; Tiffin and Aguiar, 1995).

9While these models are derived from different structural assumptions compared to the AID system, this
framework is kept for simplicity.
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Step 4. Combine the likelihood function and the prior distribution via Bayes’s theorem to obtain
the posterior distribution π(β,φ,ψ|Y ,X) and π(β,φ, ξ|Y ,X). Point estimates θ̌ can
be obtained as the mean, median, or mode from the posterior.10 Inference can be
obtained as a credible set of the posterior; for example, using a highest posterior density
interval of a given probability coverage.

A second way to implement a Bayesian solution is through the use of a least squares approx-
imation (Wang and Leng, 2007; Leng et al., 2014). Given Assumptions 1–6.A, the likelihood
function can be approximated by a Taylor expansion as

`e(θe) ≈ L(θ̂e) +
1

2
(θe − θ̂e)′I(θ̂e)(θe − θ̂e) , (25)

where θ̂e is the MLE in (15) for e ∈ {Y, Z}. Employing the same algorithm outlined previ-
ously with this expansion of the likelihood yields an approximate Bayesian solution for which
closed form conditionals exist. Thus, this procedure could be implemented via a simpler Gibbs-
sampling algorithm for which theoretical properties are readily available.

Furthermore, by virtue of Lemma 1 and standard results for parametric Bayesian estimators,
Bayes estimates θ̌ found from this algorithm are also consistent (Strasser, 1981; Bunke and
Milhaud, 1998). For convenience, this is stated in the following theorem.

Theorem 3. (i) Under assumptions 1–6.A and regularity conditions R1–R3 and R7–R9, then
θ̌e, defined as a mean, median, or mode of the posterior distribution π(θe|Y ,X), is con-

sistent; i.e., θ̌e
p→ θe,0, for e ∈ {Y, Z}.

(ii) Under Assumptions 1–3.A, 4–6.B and regularity conditions R1–R3 and R7–R9, then θ̌Y
as defined above, is consistent to the minimizer of the Kullback-Leibler divergence; i.e.,
θ̌

p→ θ∗Y , where θ∗Y = (δ′0,ψ
∗′)′.

4 Monte Carlo Study

To test the performance of the estimator defined by (15) as well as the theoretical properties
found in the previous two sections, a range of numerical exercises is conducted. These follow
the structure of Examples 1 and 2, and change the form of the conditional mean function. Data
are simulated from several scenarios that maintain the conditional mean as correctly specified;
link function misspecification would be a source of bias distinct to likelihood misspecification
(Montoya-Blandón and Jacho-Chávez, 2020). Numerical optimization of the log-likelihoods (13)

and (14) produce estimates θ̂e for e ∈ {Y, Z}. To simplify the exposition of the results, the main
estimation method used is one that assumes a Gaussian copula and beta marginals. That is,
the copula density ce(·) takes the form

ce(u1, . . . , uD) =
1√

detR
exp

−1

2

[
Φ−1(u1) · · · Φ−1(uD)

]
· (R−1 − ID) ·

Φ−1(u1)
...

Φ−1(uD)


 ,

10The posterior mean is optimal in a decision-theoretic framework as it minimizes the squared loss. Similarly,
the median minimizes the absolute value loss and the posterior mode does so with a zero-one loss. In particular,
most Bayesian LASSO analogs target a mode interpretation to their frequentist counterparts but use the posterior
mean and median for simplicity.
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where uj, j = 1, . . . , D are the pseudo-observations found by transforming the variables through a
distribution function, R is a D×D correlation matrix with elements in the lower triangular block
given by the vector of copula parameters ψ, and Φ−1(·) is the quantile function for the standard
normal distribution. The pseudo-observations are computed using the marginal distributions;
in this case, a beta in a mean-precision parameterization so that for each j in 1, . . . , D, uj is
given by

uj ≡
∫ yj

0

Γ(φj)

Γ[mj(x;βφj)]Γ[[1−mj(x;β)]φj]
tmj(x;β)φj(1− t)[1−mj(x;β)]φj dt ,

where Γ(·) is the gamma function. Additional combinations using different marginals and cop-
ulas, along with other extensions, can be found in Appendix C.

4.1 Reduced Form

Due to the ease of simulating from a reduced form setup, the paper focuses on this example
first. A multivariate fractional logit structure as in (3) is imposed for d = 3 shares; i.e.,

E[Y1|X = x] =
exp(x′β1)

1 + exp(x′β1) + exp(x′β2)
,

E[Y2|X = x] =
exp(x′β2)

1 + exp(x′β1) + exp(x′β2)
,

and E[Y3|X = x] = 1 − E[Y1|X = x] − E[Y2|X = x]. True coefficient values are set at
β1 = (−1, 0.5, 0) and β2 = (−1.5, 0, 0.5). Two covariates, x1 and x2, are generated inde-
pendently from a standard normal distribution. For the first exercise, beta marginals with a
mean-precision parameterization are used, setting φ1 = φ2 = 10. A Gaussian copula with a
correlation parameter of ψ = 0.5 links the two free marginals together. Values for y are gener-
ated via rejection sampling for sample sizes n ∈ {100, 200, 400, 800} and 1,000 simulations under
this setting. No constraints are set on β but the natural nonnegativity constraints on φ and ψ
belonging to (−1, 1) are imposed to guarantee numerical stability. Aside from the copula estima-
tors introduced in this paper, several competing estimation methods are implemented. First, the
multivariate fractional quasi-likelihood method (Mullahy, 2015; Murteira and Ramalho, 2016)
is estimated as a flexible alternative and multivariate generalization of the popular estimator
proposed by Papke and Wooldridge (1996). This estimator should remain consistent regardless
of the generating distribution as it only relies on a correctly specified conditional mean. The
next method is a Dirichlet distribution using a parameterization similar to the beta (Hijazi and
Jernigan, 2009; Murteira and Ramalho, 2016). As a Dirichlet distribution is a special case of
the beta marginals with a copula on Z, their performance should be similar. Finally, the addi-
tive log-ratio transformation regression of Aitchison (1982) is used as a simple alternative that
requires no real modeling choice. This procedure is equivalent to a SUR model on the trans-
formed outcomes; given the assumption of common covariates across shares, it further simplifies
to estimating D equations by ordinary least squares (OLS). However, as previously noted, this
procedure will not recover the true conditional mean.

Results from this first exercise are presented in Table 1 in terms of the root mean squared
error (RMSE) across 1,000 simulations. We can observe the consistency of the proposed methods
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as the RMSE shrinks at an expected rate. In general, the copula estimators outperform the other
likelihood-based methods and are chosen as preferable by the Akaike and Bayesian information
criteria (AIC and BIC, respectively). The logistic normal distribution remains inconsistent and
performs poorly in comparison to the other methods.

As a second exercise, consider what happens when, under a similar setting to before, the
copula function is changed from a Gaussian to a Farlie–Gumbel–Morgenstern (FGM) copula.
As the FGM copula generates relatively low amounts of dependence, its parameter is set to 0.9,
which translates to about a 0.3 correlation in a Gaussian distribution. The results are presented
in Table 2. Now, as expected from Theorem 2, the copula on Y remains a consistent estimator,
while the copula on Z (and similarly the Dirichlet distribution) are inconsistent and have a
reduced performance. Also as expected from the theoretical results, the copula parameter is
not recovered in its original scale and thus its RMSE remains high. However, as noted in Table
C.2, the estimated copula parameter is around 0.3, which is the true dependence within the
range allowed by the Gaussian copula. It is still the case that the copula model is selected by
both information criteria regardless of sample size. In this example, it becomes necessary to
adjust inference to control for misspecification, which is readily implemented in the numerical
optimization routine used for the paper using (19). Inference is not compromised using the
estimation method introduced in the paper as standard errors remain close or below those of
comparable consistent methods (results on inference for this exercise can be found in Table C.2
in the Appendix).

Moving away from sampling directly from a correctly specified copula likelihood, the next
exercise in Table 3 draws observations from a Dirichlet distribution. As it is possible to maintain
the conditional mean intact under this parameterization, all methods should remain consistent.
One of the drawbacks from the Dirichlet distribution is that no pairwise correlation can be
positive, something that the previous examples allowed and that could in general occur in an
applied setting. This table does not present results for the correlation parameter or second
precision parameters as these have no true counterpart. However, in Table C.3 in the Appendix,
it is noticeable that the model captures the negative correlation present in the data-generating
process with a mean of around −0.4 across the simulations. Once again, this is a manifestation
of the theoretical properties derived in Section 2.

To produce a Bayesian estimator into this setting, the following setup is used. To streamline
the results, only the copula on Y estimator is considered. As the Bayesian estimates are con-
ditional on data, a sample of n = 800 is drawn from the setting used in Table 1. A Gaussian
copula with beta marginals is given as a likelihood and the priors are of the form

β0,j ∼ Uniform(−∞,∞), j = 1, 2 ,

βk,j ∼ N (0, 5) for k = 1, 2 and j = 1, 2 ,

φj ∼ Gamma(1, 1), j = 1, 2 ,

ψ ∼ Uniform(−1, 1) .

The use of improper prior distributions for the constants is standard in Bayesian analysis and
results remain unchanged if a proper prior similar to the other coefficients is assigned. The
estimation uses the Hamiltonian Monte Carlo algorithm to sample from the posterior distribution
in four chains from random starting values (Carpenter et al., 2017). The chains pass all of the
usual diagnostics for assessing convergence to the target distribution (Brooks and Gelman, 1998;
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Figure 2: Trace Plot of Bayesian Chains in a Reduced Form Model
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Note: Combination of 4 chains, each of 5,000 draws. The dotted line shows the true value.

Vehtari et al., 2020). The results, along with the corresponding MLE output on the same data,
are presented in Table 4. As expected, both approaches capture the correct values closely and
have small standard errors that imply significant variables when they have a nonzero coefficient.
However, note that for β1,2 in this data set, the MLE estimates would imply that it is significantly
different from 0 even when this is not the case in the population model. This is not the case for
the Bayesian estimates that correctly single out the statistically insignificant coefficients. For
further visual assessment, Figures 2 and 3 present the trace and density plots of the chains,
respectively, for the main slope coefficients in β1 and β2. These combine the output from all
four chains. We can see that the draws tend to gather close to the true values and thus most of
the density is concentrated around these values as well.

In an applied setting, an important quantity of interest is the average partial effect (APE)
of variable xk on outcome yj, which can be computed as an estimate of ∂ E[Yj|X = x]/∂xk
(see, e.g., Appendix 1 in Mullahy, 2015). For notational convenience, this is written simply as
APEk,j. While in frequentist methods you would need to use the Delta method or bootstrap for
inference on this object, in the Bayesian framework it comes as a by-product of the estimation
process. By simple probability arguments, calculating this quantity for each draw of the chain
and obtaining the resulting mean (or median) and standard deviation yields appropriate esti-
mation and inference. These results are presented in Table 5. The computed APEs are similar
between all chains in terms of both point estimate and standard error. They also approximate
the true effect quite well, where this true effect is simply the APE under the true coefficient
vector. Figures 4 and 5 present the trace and density plots for the estimated APEs, showcas-
ing the simplicity of the Bayesian approach in obtaining point estimates and inference of these
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Figure 3: Density Plot of Bayesian Chains in a Reduced Form Model
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complicated functions.
Selection using a LASSO penalty and estimating a Gaussian copula with beta marginals

solves the following optimization problem:

arg min
(β,φ,ψ)∈B×Φ×Ψ

{
− log cY (F1(y1|X = x;β, φ1), . . . , FD(yD|X = x;β, φD);ψ)

−
d∑
j=1

log fj(yj|X = x;β, φj) + logFW (1|X = x;β,φ,ψ) + λ||β||1

}
.

Obtaining solutions for different values of λ using the simulated data set shows the effect of
regularization. In the frequentist case, it operates as shown in Figure 6, where the parameters
are moved towards 0 in absolute value and eventually set to 0 given a large enough penalty
parameter λ. The coefficient β2,1 does not appear in the picture as it is already estimated to be
close to 0 even without regularization.

From a Bayesian perspective, to get a sense of the selection effect that the class of priors
discussed in (23) can possess, the previous simulation is extended to a setting with 10 variables.
The variables x1, . . . , x10 are drawn independently from a standard normal distribution and are
assigned coefficients as β1 = β2 = (−2, 1,−1, 1,−1, 1, 0, 0, 0, 0, 0), so that the last five variables
are redundant in the model. The following setup for priors allows for the implementation of a
Bayesian LASSO penalty on this simulated data set (which due to the symmetry of the setup,
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Table 4: Bayesian and Frequentist Estimates for a Reduced Form Model

Parameter Chain 1 Chain 2 Chain 3 Chain 4 MLE

β0,1
−1.0603 −1.0598 −1.0620 −1.0611 −1.0614
(0.0299) (0.0293) (0.0295) (0.0298) (0.0293)

β1,1
0.4855 0.4859 0.4860 0.4866 0.4860

(0.0258) (0.0262) (0.0263) (0.0265) (0.0262)

β2,1
0.0001 0.0006 −0.0016 −0.0005 −0.0005

(0.0268) (0.0266) (0.0268) (0.0267) (0.0264)

β0,2
−1.5678 −1.5669 −1.5692 −1.5683 −1.5692
(0.0352) (0.0355) (0.0355) (0.0351) (0.0352)

β1,2
−0.0721 −0.0713 −0.0716 −0.0710 −0.0720
(0.0307) (0.0310) (0.0308) (0.0311) (0.0310)

β2,2
0.5276 0.5280 0.5258 0.5271 0.5276

(0.0314) (0.0310) (0.0312) (0.0314) (0.0312)

Note: Bayesian and MLE estimates from a Gaussian copula with beta
marginals specification. Standard errors are in parentheses (standard
deviations in each chain for Bayesian and asymptotic for MLE).

Table 5: Bayesian Estimates and Inference of APEs for a Reduced Form Model

Parameter Chain 1 Chain 2 Chain 3 Chain 4 True

APE1,1
0.0866 0.0866 0.0866 0.0867

0.0890
(0.0037) (0.0038) (0.0038) (0.0038)

APE2,1
−0.0159 −0.0158 −0.0161 −0.0160 −0.0165
(0.0039) (0.0039) (0.0039) (0.0039)

APE1,2
−0.0229 −0.0229 −0.0229 −0.0228 −0.0165
(0.0030) (0.0030) (0.0029) (0.0030)

APE2,2
0.0606 0.0607 0.0604 0.0606

0.0594
(0.0032) (0.0032) (0.0032) (0.0032)

Note: Bayesian estimates from a Gaussian copula with beta marginals
specification. Standard errors (standard deviation of each chain) are
in parentheses.
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Figure 4: Trace Plot of APE Chains in a Reduced Form Model

0 5000 10000 15000 20000

0.075

0.080

0.085

0.090

0.095

0.100

A
P

E
1
,1

0 5000 10000 15000 20000

−0.025

−0.020

−0.015

−0.010

−0.005

A
P

E
2
,1

Draws

0 5000 10000 15000 20000

−0.035

−0.030

−0.025

−0.020

−0.015

A
P

E
1
,2

0 5000 10000 15000 20000

0.050

0.055

0.060

0.065

0.070

A
P

E
2
,2

Draws

Note: Combination of 4 chains, each of 5,000 draws. The dotted line shows the true value.

will also mimic the behavior of the group-LASSO penalty):

β0,j ∼ Uniform(−∞,∞), j = 1, 2 ,

βk,j ∼ N (0, τ 2
k,j) for k = 1, . . . , 10 and j = 1, 2 ,

τ 2
k,j ∼ Exponential(λ2/2) for k = 1, . . . , 10 and j = 1, 2 ,

λ2 ∼ Exponential(1) ,

φj ∼ Gamma(1, 1), j = 1, 2 ,

ψ ∼ Uniform(−1, 1) .

The resulting point estimates and inference can be found in Table C.8. As expected, these
are shrunk towards 0, which is a consequence of the LASSO penalty encoded in the prior
distributions. Table 6 shows the relevant selection aspects for these coefficients and APEs
for each variable. While Bayesian selection is in general not sharp, other methods such as
the credible interval or scaled neighborhood criteria can be used to select variables based on
estimates from this specification (Li and Lin, 2010).11 The credible interval method sets a
coefficient βk,j to 0 if its credible interval at a given level l̄ (computed here as the highest
posterior density interval) contains 0. On the other hand, the scaled neighborhood method
takes a dual approach by computing the posterior probability within the interval defined by the

11Other attractive methods exist, which combine the frequentist and Bayesian properties of selection. See, for
example, the method in Leng et al. (2014) that performs a frequentist penalized regression with each λ sample
in the chain and selects those variables which appear in 50 percent or more of the models.
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Figure 5: Density Plot of APE Chains in a Reduced Form Model
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standard errors (given by the standard deviation of the chains) and excludes the variable if it
surpasses a given threshold; i.e., Pr[(− sd(βk,j), sd(βk,j))] > p̄ for some p̄ ∈ (0, 1).

As can be seen in Table 6, the APEs are still precisely estimated. The very fact that
it is simple to obtain inference for this quantity after undertaking a selection step is one of
the virtues of regularization in the Bayesian framework. Additionally, the employed selection
methods seem to capture the effects for the significant variables, while dropping the irrelevant
ones. The scaled neighborhood method gets all of the variables right using a p̄ = 0.5, while
there are some issues if l̄ = 0.5 is used for the credible interval approach. If the level is increased
slightly, say to l̄ = 0.55, then the method also successfully selects the correct model in this
context. Importantly, by including a prior distribution for λ, the mean or median posterior
value for this quantity can be used as a guidance for selecting the amount of regularization. In
this example, both the mean and median value for λ is around 1.79, indicating that only a slight
amount of penalization is necessary to exclude the redundant variables of this system.

4.2 Demand Estimation

To mimic some of the properties present in the empirical application of the next section, an
almost ideal demand system with d = 3 shares is simulated from (2) by choosing the following
population values for the parameters:

α0 = 0.675 , α =

 0.929
0.297
−0.226

, Γ =

 0.062 −0.033 −0.029
−0.033 −0.058 0.091
−0.029 0.091 −0.062

, π =

−0.064
−0.029
0.093

 .
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Table 6: Bayesian APEs and Selection for an Extended Reduced Form Model

Variable True APEk,1 True APEk,2 APEk,1 APEk,2 CI y1 CI y2 SN y1 SN y2

x1 0.091 0.091
0.080 0.080

X X X X
(0.004) (0.004)

x2 −0.091 −0.091
−0.082 −0.076

X X X X
(0.004) (0.004)

x3 0.091 0.091
0.083 0.081

X X X X
(0.004) (0.004)

x4 −0.091 −0.091
−0.082 −0.084

X X X X
(0.004) (0.004)

x5 0.091 0.091
0.081 0.081

X X X X
(0.004) (0.004)

x6 0.000 0.000
−0.002 −0.003

X X × ×
(0.003) (0.003)

x7 0.000 0.000
−0.004 0.004 × × × ×
(0.003) (0.003)

x8 0.000 0.000
−0.002 0.000 × × × ×
(0.003) (0.003)

x9 0.000 0.000
−0.004 0.001

X × × ×
(0.003) (0.003)

x10 0.000 0.000
−0.001 −0.003 × X × ×
(0.003) (0.003)

Note: Bayesian estimates from a Gaussian copula with beta marginals specification. APEk,j
denotes the average partial effect for a variable on outcome j = 1, 2. Standard errors (the standard
deviation of each chain) are in parentheses. CI yj represents credible interval selection with l̄ = 0.5
and SN yj represents the scaled neighborhood method with p̄ = 0.5; both regarding outcome
j = 1, 2. “X” indicates that a variable is present in that outcome’s equation and “×” denotes its
absence. The Bayesian algorithm chooses a regularization parameter λ = 1.79.
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Figure 6: Frequentist LASSO in a Reduced Form Model with a Gaussian Copula and Beta
Marginals
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Note: Dotted line at 0. Optimization of the Gaussian copula with beta marginals likelihood over 25
equally spaced values of λ from 0 to 1,000.

These values satisfy the constraints of an AID system for homogeneity of degree one in prices
and expenditures, as well as the symmetry of the Slutsky matrix. In order to generate values
from this model, the following exercises use either a Gaussian copula with beta marginals or
generate from a multivariate normal distribution directly, while restricting the values to lie on
Sd. Prices are generated from a uniform distribution between 1.2 and 1.5 for all three simulated
goods. Expenditures were drawn from a log-normal distribution with a mean of 6 and a standard
deviation of 0.25 in the log scale. For each generating exercise, there are 1,000 simulations. For
now, the paper examines the maximum likelihood estimation results, leaving the Bayesian results
for the empirical application, which will be conditional on the examined data.

For estimation purposes in the standard AID framework, there are only (d2 + 3d− 1)/2 free
parameters to estimate as the constraints allow us to eliminate one parameter each from α and
π and all but d(d−1)/2 parameters from the Γ matrix. These can be recovered in each iteration
of the estimation algorithm, ensuring that the constraints are always satisfied. Furthermore, the
use of marginals that respect the fractional restriction encourages positivity on the system (all
predicted shares being greater than 0), as the likelihood is undefined if the underlying values
lead to predictions outside of this range.

The flexibility and robustness of the methodology introduced in the paper even in this context
is showcased in Tables 7 and 8. The main difference is in the generating marginal distributions.
In the first table, betas with mean-precision parameterization are used, whereas the second table
uses normal distributions. The tables estimate four of the same models as before: a copula on Y ,
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a copula on Z, a multivariate fractional quasi-likelihood (it is no longer a logit as the conditional
mean specification changes), and a Dirichlet. The final method is a regular multivariate normal
distribution, where the φ parameters take on a precision interpretation for each marginal, and
ψ or ξ represents the correlation parameter. As a Gaussian copula with Gaussian marginals is
equivalent to a multivariate normal distribution, this second exercise is closer to what is usually
used in practice, where no appropriate restriction on the estimating functional form is imposed.

The main features from the previous simulations are maintained in this setting as well.
Both the copula on Y and Z estimators are consistent due to their correctly-specified nature in
Table 7. Both AIC and BIC select the copula on Y as the preferable estimator at all sample
sizes, with the regular AID coming in at a close second place in terms of performance. This
is also to be expected, as part of the attractive features of the normal distribution are that
the normal distribution is consistent under the same conditions as the multivariate fractional
quasi-likelihood, even under misspecification (Gourieroux et al., 1984). While this multivariate
fractional distribution is generally only used in conjunction with a logit link, this exercise also
confirms its ability to remain consistent only under correct conditional mean specifications.
Table 8 presents a similar view; however, the copula on Z estimator becomes less reliable. This
is to be expected due to its failure to be consistent under more general conditions than the copula
on Y estimator. Surprisingly, the normal AID system does not become much more dominant in
this setting, which could be related to the positivity argument discussed before, as the current
configuration could try to pull the parameters toward violating the fractional restriction on the
outcomes.

To examine the role of a more flexible alternative to the AID system, the next two simula-
tions implement a setting similar to the previous one, except that polynomials on the deflated
expenditures are added as outlined in (24). Two extra terms are added to the generating pro-
cess, where the new population coefficients are just π2 = π2

1 and π3 = π3
1, with π1 being the

original coefficients in the first two simulation exercises. Tables 9 and 10 present the results for
this configuration. In general, the patterns observed in this iteration track the previous results
very closely. It is worth noting that the copula on Z estimator becomes even more erratic with
the inclusion of extra parameters, so that the copula on Y estimator remains a preferred choice.
We have seen throughout this Monte Carlo study, even in a Bayesian setting, that it has strong
a performance compared to the methods previously available in the literature.

5 Empirical Application

As a complement and extension to the numerical study undertaken in the previous section, this
section puts into action the methods introduced in the paper. This empirical application uses the
data set in Chang and Serletis (2014) (hereafter referred to as CS), which collects information
on household transportation expenditures in Canada from the Canadian Survey of Household
Spending between the years of 1997 and 2009. Using these observations, CS fit an almost ideal
demand system, as well as its quadratic extension, and the Minflex Laurent model (Deaton and
Muellbauer, 1980; Barnett, 1983; Barnett and Lee, 1985; Banks et al., 1997). Focusing on the
AID system, in the language of this paper’s Example 1, it translates to fitting the following
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model for household i in 1, . . . , n:

E[Yi|ei,pi] = α+ Γpi + π[ei − α0 −α′pi − (1/2)p′iΓpi] . (26)

Using the notation developed thus far, there are expenditure shares for d = 3 goods, where
y1 represents gasoline, y2 is local transportation, and y3 is intercity transportation. The base
category of analysis will be the same as used in CS, given by the third good. Prices of these
goods are normalized with 2002 serving as the base. To rule out the effect of possible unobserved
heterogeneity, CS assumes that households with similar demographic characteristics share sim-
ilar consumption patterns. Thus, instead of including these characteristics to complicate the
structural model, CS focus only on households between 25 and 64 years old, living in urban areas
with a population of at least 30,000 in English Canada. The authors also restrict the sample
to households with a larger than 0 expenditure on all three goods, to avoid the issue of bound-
ary values. Furthermore, the sample is split between three types of households: single-member
households, married couples without children, and married couples with one child. Summary
statistics for the variables are presented in Table 11. While this table uses the data in levels,
prices and expenditures are understood to have been transformed to natural logarithms for
estimation purposes in (26).

For modeling purposes, CS assume that all observations are independent and identically
distributed, which is a reasonable assumption as data is collected as repeated cross-sections
at the household level. The authors also acknowledge possible endogeneity issues, but given
the use of individual-level consumption instead of an aggregated level, it is likely that there
is no simultaneity bias in the determination of household consumption and yearly aggregate
prices. Furthermore, even when endogeneity is addressed by means of the generalized method
of moments (GMM) or iterative three-stage least squares (3SLS), estimates tend to be similar
to the baseline ones. Therefore, the conditional mean assumption in (1) is likely to be satisfied.

As seen in the Monte Carlo evidence from the previous section, the copula on Y estimator
stands out as a flexible alternative to model structural estimation in demand models. Table 12
presents the estimation results using beta marginals with Gaussian or FGM copulas. The two
represent widely-used copulas in applied research and belong to the two most important classes
of copulas: elliptical and Archimedean. The resulting estimates are quite similar within each of
the three population segments regardless of the copula — a consequence of Theorem 2 in action.
The only main differences for the parameters of the AID system are in α0, but this parameter
is known to be identified only up to a scale factor so that it tends to vary with any estimation
procedure (Deaton and Muellbauer, 1980). The estimates also align closely with those obtained
in Table II of CS and mimic other replications of their results (Velásquez-Giraldo et al., 2018).
Interestingly, the negative correlation between the two outcomes is reflected as a correlation
coefficient in the Gaussian distribution of about −0.4. As the FGM copula cannot produce as
much negative dependence, the estimates tend to be close to the lower bound of 1. Inference
also remains quite similar between both specifications.12 Standard errors are consistent with
the magnitude and role of each parameter and also closely resemble those previously found in
the literature.

As a second exercise, an estimation can be done in the Bayesian framework, using similar
techniques as before. However, one of the issues with using Bayesian directly on the AID

12As numerical optimization is done in an unrestricted domain, the standard errors for the precision and
correlation parameters are Delta method transformations.
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Table 11: Summary Statistics for Data in Chang and Serletis (2014)

Variable Good Mean Std. Dev. Minimum Maximum
Single member households, 2,218 observations

Budget shares Gasoline 0.499 0.237 0.002 0.986
Local transportation 0.095 0.128 0.001 0.856
Intercity transportation 0.406 0.228 0.003 0.985

Prices Gasoline 1.157 0.269 0.726 1.751
Local transportation 1.038 0.131 0.801 1.307
Intercity transportation 1.011 0.132 0.755 1.233

Expenditures 2,430.7 1,703.0 161 24,620
Married couples without children, 3,326 observations

Budget shares Gasoline 0.524 0.234 0.005 0.990
Local transportation 0.083 0.114 0.000 0.866
Intercity transportation 0.392 0.224 0.003 0.985

Prices Gasoline 1.170 0.268 0.726 1.751
Local transportation 1.046 0.131 0.801 1.307
Intercity transportation 1.017 0.132 0.755 1.233

Expenditures 3,920.5 2,396.7 170 26,230
Married couples with one child, 6,141 observations

Budget shares Gasoline 0.575 0.237 0.002 0.997
Local transportation 0.092 0.117 0.000 0.886
Intercity transportation 0.333 0.229 0.002 0.980

Prices Gasoline 1.146 0.261 0.726 1.751
Local transportation 1.035 0.127 0.801 1.307
Intercity transportation 1.005 0.130 0.755 1.233

Expenditures 4,858.4 3,021.8 259 37,490

Note: Sample covers the period from 1997 to 2009. Intercity transportation is taken as the
base category.
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Table 12: MLE Estimates of AID System using the Copula Y Estimator with Different Copulas
and Beta Marginals

Parameter
Single households Married couples Married with one child

Gaussian FGM Reparam. Gaussian FGM Reparam. Gaussian FGM Reparam.

α0
0.871 0.358 1.282 0.379 −0.401 0.216 0.655 1.599 0.961

(0.126) (0.083) (0.028) (0.507) (0.120) (0.073) (0.034) (0.461) (0.012)

α1
0.889 0.884 0.403 1.086 1.121 0.494 1.149 1.048 0.491

(0.071) (0.074) (0.016) (0.037) (0.054) (0.007) (0.038) (0.049) (0.007)

α2
0.247 0.273 0.073 0.259 0.286 0.080 0.246 0.239 0.075

(0.016) (0.017) (0.004) (0.018) (0.017) (0.002) (0.012) (0.014) (0.002)

γ1,1
0.057 0.056 0.086 0.002 0.007 0.045 −0.043 −0.028 0.007

(0.042) (0.043) (0.041) (0.034) (0.034) (0.031) (0.025) (0.025) (0.024)

γ2,1
−0.019 −0.014 −0.008 −0.023 −0.024 −0.010 −0.031 −0.031 −0.018
(0.012) (0.012) (0.012) (0.008) (0.009) (0.008) (0.007) (0.007) (0.007)

γ2,2
−0.032 −0.041 −0.028 0.053 0.052 0.057 0.052 0.042 0.056
(0.033) (0.032) (0.033) (0.025) (0.025) (0.025) (0.021) (0.021) (0.021)

π1
−0.060 −0.056 −0.060 −0.074 −0.072 −0.074 −0.076 −0.072 −0.076
(0.010) (0.010) (0.010) (0.008) (0.007) (0.007) (0.005) (0.005) (0.005)

π2
−0.022 −0.024 −0.022 −0.023 −0.024 −0.023 −0.020 −0.022 −0.020
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001)

φ1
3.551 3.589 3.551 3.718 3.769 3.718 3.498 3.505 3.498

(0.102) (0.099) (0.102) (0.083) (0.081) (0.082) (0.059) (0.058) (0.059)

φ2
7.313 7.367 7.313 7.881 7.987 7.881 7.382 7.357 7.382

(0.359) (0.353) (0.361) (0.297) (0.292) (0.297) (0.189) (0.183) (0.188)

ψ
−0.390 −0.999 −0.390 −0.400 −1.000 −0.400 −0.363 −0.995 −0.363
(0.026) (0.002) (0.026) (0.021) (0.001) (0.021) (0.017) (0.021) (0.017)

Log-lik. 3,352.7 3,330.1 3,352.7 5,660.6 5,635.6 5,660.6 9,734.5 9,677.5 9,734.4
Obs. 2,218 3,326 6,141

Note: Sample covers the period from 1997 to 2009. Intercity transportation is taken as the base category. Standard errors
robust to copula misspecification are in parentheses. The third column of each data set includes a reparameterized model with
a Gaussian copula.
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conditional mean (26) is the scale of all parameters except for π. In the original scales, the
Hamiltonian Monte Carlo algorithm used to explore the parameter space and draw from the
posterior can get stuck and over-reject as many combinations of parameter values do not satisfy
the positivity constraints. To this end, a reparameterization similar to that in Lewbel and
Pendakur (2009) becomes necessary. The authors use the natural logarithm of the expenditure
variable after having subtracted the median of the log-transformed value; i.e., they define enew =
e−median(e). In the AID system, this reparameterization keeps π intact, while ensuring that
α0, α, and Γ take on scales that are more likely to respect the fractional restriction for the
conditional mean. Table 12 includes a third column for each data set where the AID system is
estimated using enew instead of e. As expected, the slope estimates π̂ remain the same, while
other estimated parameters change in scale. Note, for example, how the α̂ are now closer to the
mean expenditure of each good.

With this reparameterization, the Bayesian algorithm becomes more accurate and can pro-
duce results without needing many iterations. In particular, after around 300 tuning iterations,
the algorithm rarely produces rejections based on violations of positivity constraints. This is
also due to the beta marginals that — similar to the frequentist case — encourage parameter
values that satisfy the fractional restrictions of multivariate fractional outcomes. Within this
new parameterization, the following priors are imposed:

α0 ∼ N (0, 5) ,

αj ∼ N (0, 1), j = 1, 2 ,

γj,l ∼ N (0, 1), j = 1, 2, l ≤ j, ,

πj ∼ N (0, 1), j = 1, 2 ,

φj ∼ Gamma(1, 1), j = 1, 2 ,

ψ ∼ Uniform(−1, 1) .

The slightly tighter priors are useful in avoiding many proposal rejections in the posterior explo-
ration algorithm, as it is clear that larger values of the parameters are generally incompatible
with the fractional restriction. Table 13 presents the estimation results from a Bayesian per-
spective. Estimates are the mean of the chains, where there are five chains, each providing 700
draws (after the 300 tuning period). Similar to before, the chains are checked and pass the usual
convergence diagnostics. As can be observed, the results remain similar to the maximum like-
lihood ones, when the reparameterization is considered. The Bayesian standard errors tend to
be more narrow for the α and Γ parameters, but slightly larger for the slopes π, which become
statistically insignificant in the first model. Figures 7 and 8 present the trace and density plots
for the core AID parameters in the data set for married couples with one child. As expected, the
most variability is given in the chain for α0. There appears to be some possible auto-correlation
in the other α parameter chains, which can be solved by thinning the chain before computing
estimates; this is done for the results presented in Table 13.

Looking beyond the parameter estimates in the AID system, it is important to be able to
provide price and income elasticities, as well as inference with respect to these parameters. As
previously stated, this inference is simple in the Bayesian context. While these functions can be
complicated and highly nonlinear with respect to the parameters so as to make the application
of the Delta method challenging, computing them for a given set of estimates is simple. Table
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Table 13: Bayesian Estimates of a Reparameterized AID System using the Copula Y Estimator
with a Gaussian Copula and Beta Marginals

Parameter Single households Married couples Married with one child

α0
0.651 0.697 0.928

(0.354) (0.368) (0.369)

α1
0.446 0.461 0.494

(0.021) (0.027) (0.028)

α2
0.086 0.069 0.076

(0.009) (0.009) (0.008)

γ1,1
−0.058 −0.073 −0.076
(0.008) (0.007) (0.005)

γ2,1
−0.022 −0.023 −0.020
(0.003) (0.002) (0.002)

γ2,2
0.050 0.034 0.005

(0.031) (0.027) (0.022)

π1
−0.004 −0.007 −0.017
(0.014) (0.010) (0.008)

π2
−0.017 0.045 0.045
(0.032) (0.025) (0.021)

φ1
3.563 3.725 3.503

(0.093) (0.081) (0.056)

φ2
7.339 7.890 7.386

(0.244) (0.207) (0.149)

ψ
−0.388 −0.399 −0.362
(0.018) (0.015) (0.011)

Obs. 2,218 3,326 6,141

Note: Sample covers the period from 1997 to 2009. Intercity transportation is
taken as the base category. Standard deviations for the chains are in parentheses.
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Figure 7: Trace Plot of Coefficient Chains in a Reparameterized Bayesian AID System
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Note: Results for the data set on married couples with one child. Combination of 5 chains with 700
draws each for a total of 3,500 draws.

16 presents the income and uncompensated price elasticities for the AID. Following CS, these
are the elasticities evaluated at the average prices and, given the parameterization necessary
for a Bayesian estimation, are at the average median-centered expenditure. These elasticities
are slightly larger than those in CS, but are for the most part consistent with economic theory.
Note, however, the large standard errors for elasticities associated to local transportation (Good
2). This phenomenon most likely occurs because of a few outliers in the chains, combined with
the generally small share of the budget allocated to this good. As the predicted shares get closer
to the lower bound of 0, the computed elasticities can suffer from numerical issues. The fact
that the mean remains close to the expected values, however, is a sign this occurs only a few
times throughout the chain.

In order to resolve some of these issues and improve the fit, the paper now considers an
extension of the AID system to account for polynomials on deflated real expenditures ẽ. In
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Table 14: Elasticity Estimates and Inference from a Bayesian AID System

Good
Elasticities

Income Price (1) Price (2) Price (3)
Single member households, 2,218 observations

(1)
0.991 −1.129 −0.049 0.188

(0.031) (0.027) (0.008) (0.023)

(2)
0.914 −0.221 −0.402 −0.291

(0.674) (0.507) (0.723) (0.828)

(3)
1.048 0.152 −0.065 −1.135

(0.076) (0.031) (0.068) (0.076)
Married couples without children, 3,326 observations

(1)
0.986 −1.154 −0.049 0.218

(0.021) (0.023) (0.006) (0.022)

(2)
−0.420 0.931 −1.218 0.708

(104.842) (85.301) (42.383) (61.464)

(3)
0.926 0.224 −0.017 −1.133

(0.051) (0.031) (0.055) (0.063)
Married couples with one child, 6,141 observations

(1)
0.966 −1.136 −0.038 0.207

(0.016) (0.017) (0.005) (0.016)

(2)
1.539 −0.531 −1.174 0.166

(52.174) (42.687) (16.385) (19.273)

(3)
0.941 0.235 0.036 −1.212

(0.046) (0.029) (0.049) (0.061)

Note: Elasticities are computed at the average median-normed expenditures and average prices for
each chain. Point estimates are given by the mean of the chains. Standard deviations for the chains
are in parentheses.
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Figure 8: Density Plot of Coefficient Chains in a Reparameterized Bayesian AID System
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Note: Results for the data set on married couples with one child. Combination of 5 chains with 700
draws each for a total of 3,500 draws.

particular, the following conditional mean obtained in one of the examples is used:

ẽnew,i ≡ enew,i − α0 −α′pi − (1/2)p′iΓpi ,

E[Yi|enew,i,pi] = α+ Γpi +
R∑
r=1

πrẽ
r
new,i .

The reparameterization of the model in terms of the median-centered expenditure also plays a
crucial role in this setting as it makes the magnitudes of the coefficients πr, r = 1, . . . , R, directly
comparable (Blundell et al., 1993; Lewbel and Pendakur, 2009). Having this standardized
measure of the covariates allows for selection to be both accurate and more meaningful. For
simplicity, R is set equal to 3, so that there is a third-degree polynomial on the conditional mean
equation for each share. To implement the estimation and shrinkage of the coefficients using the
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LASSO penalty, the following priors are assumed:

α0 ∼ N (0, 5) ,

αj ∼ N (0, 1), j = 1, 2 ,

γj,l ∼ N (0, 1), j = 1, 2, l ≤ j, ,

πr,j|τr,j ∼ N (0, τr,j), j = 1, 2, r = 1, 2, 3 ,

τr,j|λ2 ∼ Exponential

(
λ2

2

)
,

λ2 ∼ Exponential(1) ,

φj ∼ Gamma(1, 1), j = 1, 2 ,

ψ ∼ Uniform(−1, 1) .

The results for selection performance are given in Table 15. Using the credible interval and
scaled neighborhood approaches to selection in the Bayesian framework, it appears that a third-
degree polynomial on deflated expenditures is relevant for modeling the demand for gasoline.
It does not seem to be the case for local transportation, where the methods are dependent on
the demographic characteristics of the consumers. For example, while the second-order term is
significant in the single-member households, no polynomial is selected for the married without
children households. In the final population segment, both measures are inconclusive and this
is the only instance in which the methods disagree with one another.

Table 15: Selection of Polynomial Terms in an Extended Bayesian AID System

Polynomial CI (1) CI (2) SN (1) SN (2)
Single member households, 2,218 observations
ẽ X X X X
ẽ2 × X × X
ẽ3 X × X ×

Married couples without children, 3,326 observations
ẽ X X X X
ẽ2 X × X ×
ẽ3 X × X ×

Married couples with one child, 6,141 observations
ẽ X X X X
ẽ2 X X X ×
ẽ3 × X × X

Note: CI (1) and CI (2) represents credible interval selection with l̄ = 0.5 for each good’s equation.
SN (1) and SN (2) uses the scaled neighborhood method with p̄ = 0.5; “X” indicates a variable is
present in that outcome’s equation; and “×” denotes its absence. The Bayesian algorithm chooses a
regularization parameter λ = 1.97 for the first sample; λ = 1.95 for the second and third.

Simultaneous to the selection step, the estimation of the extended AID coefficients is straight-
forward. Table 14 presents the results for the income and price elasticities in this model, which
are simple to obtain due to the Bayesian approach. Furthermore, it appears that the inclusion
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of the polynomial terms not only makes the model more flexible, but it also stabilizes the values
and inference for these elasticities. The signs are in concordance with economic theory: all
of the goods are normal with a relatively large income elasticity that is close to unity. The
own-price elasticities are all negative and suggest that gasoline and intercity transportation are
slightly elastic, whereas local transport is somewhat inelastic. The magnitudes also vary across
the demographic groups, with married couples with one child having the largest price reactions.
As these elasticities are uncompensated, the possibility of these households reacting to price
variations might bear some correlation with income or other socioeconomic variables. These
interactions might not be fully accounted for by the use of different estimation samples. The
cross-price elasticities are slightly more erratic, as they suggest some substitution effect between
gasoline and intercity transportation, but the complementary nature of gasoline and local trans-
port is maintained (as is seen in CS). Figures 9 and 10 present the trace and density plots for
these elasticities, respectively.

Table 16: Elasticity Estimates and Inference from an Extended Bayesian AID System

Good
Elasticities

Income Price (1) Price (2) Price (3)
Single member households, 2,218 observations

(1)
0.966 −1.226 −0.009 0.270

(0.012) (0.053) (0.050) (0.062)

(2)
1.056 −0.094 −0.804 −0.158

(0.053) (0.252) (0.057) (0.272)

(3)
1.023 0.228 −0.023 −1.227

(0.016) (0.065) (0.052) (0.112)
Married couples without children, 3,326 observations

(1)
0.958 −1.247 −0.041 0.331

(0.010) (0.067) (0.040) (0.082)

(2)
1.049 −0.323 −0.890 0.164

(0.083) (0.294) (0.083) (0.333)

(3)
1.035 0.278 0.025 −1.338

(0.019) (0.060) (0.048) (0.099)
Married couples with one child, 6,141 observations

(1)
0.956 −1.321 −0.101 0.466

(0.013) (0.090) (0.033) (0.119)

(2)
0.943 −0.614 −1.020 0.692

(0.057) (0.221) (0.059) (0.258)

(3)
1.057 0.438 0.110 −1.605

(0.018) (0.057) (0.040) (0.086)

Note: Elasticities are computed at the average median-normed expenditures and average prices for
each chain. Point estimates are given by the mean of the chains. Standard deviations for the chains
are in parentheses.
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6 Conclusion

The paper introduces several estimation procedures for multivariate fractional outcomes, which
are useful in both structural and reduced form contexts. A likelihood function is constructed
using copulas in two ways, one of which is found to be robust to deviations from the model
assumptions. These likelihoods also allow for more flexibility in the dependence structure be-
tween shares than the usual joint distributions assumed on outcomes in the unit-simplex. Both
of the introduced methods allow the researcher to satisfy the main characteristic that comes
with multivariate fractional responses — a conditional mean specification and the fractional
and unit-sum restrictions in the outcomes — and allows for the inclusion of cross-equation re-
strictions. The latter point is of particular importance in structural demand estimation models
where these restrictions are at the heart of guaranteeing economic regularity of the underlying
demand functions. The paper also shows how Bayesian methods can be crucial in this setting
by showing how the methods can be augmented to handle covariate selection using a Bayesian
analog of regularization. Inference is still simple in this framework, even after performing a se-
lection step, which can be hard to accomplish in frequentist settings. As the objects of interest
in applied research are complicated functions of the parameters, the Bayesian approach allows
for a natural way to handle inference of these quantities as well. Numerical exercises and an
empirical application of a structural demand system to transportation expenditures in Canada
showcase the flexibility of the proposed methods and their usefulness in an applied setting.

As a matter of future research, it would be interesting to extend this kind of Bayesian
copula estimation to broader settings apart from the multivariate fractional outcome context.
While Bayesian methods, regularization, and copulas are popular topics in econometrics and
statistics, the combination of all of these elements could prove to be valuable in adding flexibility
while preserving structure in different modeling problems. Additionally, it would be interesting
to bring these tools to more applications in which multivariate fractional outcomes naturally
arise. Examples include data for market shares on a given industry, portfolio shares in financial
econometrics, industrial organization and firm analysis, among many others.
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A Proof of Main Results

Proof of Proposition 1. This is a specialized version of the formulas in Gijbels and Herrmann
(2014). As

FW (w|X; δ,η) =

∫
Tw
dF1,...,D(y1, . . . , yD|X; δ,η) ,

where Tw = {(y1, . . . , yD) ∈ RD : 0 ≤ yj ≤ 1, j = 1, . . . , d;
∑D

j=1 yj ≤ w}, then the set Tw can be
expressed using multiple integrals corresponding to (7).

Proof of Proposition 2. The existence of a solution is guaranteed if
∑d

j=1mj(x,β) = 1 is im-
posed, as the right-hand term of (11) will always be less than 1. To obtain a solution, first note
that the inverse mapping for the stick-breaking transformation (9), Y = s−1(Z), is given by

Y1 = Z1, Yj = Zj

j−1∏
l=1

(1− Zl) for j = 2, . . . , d . (A.1)

Additionally, this mapping satisfies the following property:

j∏
l=1

(1− Zl) = 1−
j∑
l=1

Yl , (A.2)

for j = 1, . . . , D. First, set µ1(x;γ,ψ) = m1(x,β). For j = 2, . . . , D, take the definition of Yj
in (A.1), replace Zj = Z̃j + mj(x,βj), and take conditional expectations on both sides. This
results in

mj(x,β) = E

[
Z̃j

j−1∏
l=1

(
1− Z̃l − µl(x;γ,ψ)

) ∣∣∣∣∣X = x

]
+ µj(x;γ,ψ) · E

[
j−1∏
l=1

(1− Zl)

∣∣∣∣∣X = x

]

While the first expectation cannot be reduced, the second can be replaced by taking conditional
expectations of (A.2) for j − 1. Dividing by this term gives the desired result.

Proof of Theorem 1. For θ̂Y , the only non-standard part of the likelihood is the integral corre-
sponding to the probability of set T , given by Prf (Y−d ∈ T |X = xi;θY ), where the subscript
emphasizes that the probability is taken with respect to the assumed joint distribution. However,
since θY,0 satisfies H(·|X) = F (·|X;θY,0) by Assumption 6.A, the relevant probability becomes
Prh(Y−d ∈ T |X = xi), where the notation emphasizes that it is taken with respect to the true
H. This probability equals 1, as it is assumed that H is a joint distribution with support in Sd.
Thus, the log of this probability equals 0 and the term is irrelevant in the population. The usual
argument would then guarantee consistency in light of Assumption 5; the same is true for θ̂Z .
The rest of the argument for asymptotic normally is standard as outlined; e.g., in Joe (2014),
pp. 227.
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Proof of Lemma 1. First, note that since PX (the marginal distribution of X) is given, we have

KL(h, f ;θY ) = EP [KL(hY |X , fY |X ;θY )] , (A.3)

where EP means that the expectation is taken with respect to X ∼ PX and KL(hY |X , fY |X ;θY )
is the KL divergence between the conditional distributions h(Y |X = x) and f(Y |X = x;θY ).
Thus, we only need to focus on the conditional KL divergence. This can be derived as follows:

log

[
h(Y |X = x)

f(Y |X = x;θY )

]
= log

[
c(H1(Y1|X = x), . . . , HD(YD|X = x))

cY (F1(Y1|X = x; δ1), . . . , FD(YD|X = x; δD);η)
×

D∏
j=1

hj(Yj|X = x)

fj(YD|X = x; δj)
× FW (1|X = x;θY )

I(Y ∈ T )

]

= log

[
c(H1(Y1|X = x), . . . , HD(YD|X = x))

cY (F1(Y1|X = x; δ1), . . . , FD(YD|X = x; δD);η)

]
+

D∑
j=1

log

[
hj(Yj|X = x)

fj(YD|X = x; δj)

]
+ log

[
FW (1|X = x;θY )

I(Y ∈ T )

]
.

Taking conditional expectations with respect to h(Y |X = x) yields KL(hY |X , fY |X ;θY ). Due
to (A.3), another expectation — this time with respect to PX — gives the desired result.

Proof of Theorem 2. From Lemma 1, we can write the KL divergence as

KL(h, f ;θY ) = Eh

[
log

c(H1(Y1|X = x), . . . , HD(YD|X = x))

cY (F1(Y1|X = x; δ1), . . . , FD(YD|X = x; δD);ψ)

]
︸ ︷︷ ︸

T1

+

D∑
j=1

KL(hj, fj; δj)︸ ︷︷ ︸
T2

+ Eh

[
log

FW (1|X = x;θY )

I(Y ∈ T )

]
︸ ︷︷ ︸

T3

,

where there are three terms, T1, T2, and T3, each representing a divergence measure between
either the copulas, marginals, or truncation probability. Similar to the proof of Theorem 1,
Eh[log I(Y ∈ T )] = 0 under the true density. Furthermore, as long as f(·) places a positive
amount of density in T , the numerator of the T3 term will be well-defined.

Now, based on Assumptions 5 and 6.B, there exists a true δ0 that correctly specifies all the
marginals, but no η that does so for the copula. Evaluating T2 at δ0 shows that KL(hj, fj; δj,0) =
KL(hj, hj) = 0, j = 1, . . . , D. Similarly, evaluating T1 at δ0 yields

Eh

[
log

c(H1(Y1|X = x), . . . , HD(YD|X = x))

cY (H1(Y1|X = x), . . . , FD(YD|X = x);ψ)

]
,

so that T1 reduces to the KL divergence based solely on the dependence structure. Thus,
consistency of the subvector δ̂ in θ̂Y to δ0 is guaranteed by Theorem 2.2 in White (1982).
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Consistency of η̂ is guaranteed to η∗, which is the minimizer of T1 and the maximizer of T3

given δ0. Asymptotic normality follows from Theorem 3.2 in White (1982) and requires the full
sandwich covariance matrix as there is no diagonality in either Ih or Jh to exploit in the copula
estimation (see Joe, 2014, pp. 228).

Proof of Corollary 1. In this setting, similar to Theorem 2, the KL divergence can be split into
two terms:

KL(h, f ;θY ) = Eh

[
log

c(H1(Y1|X = x), . . . , HD(YD|X = x))

cY (F1(Y1|X = x; δ1), . . . , FD(YD|X = x; δD);ψ)

]
︸ ︷︷ ︸

T1

+
D∑
j=1

KL(hj, fj; δj)︸ ︷︷ ︸
T2

.

As T2 vanishes when evaluated at δ0 and T1 becomes the KL divergence between the copula
dependence structures, the proof can follow the same steps as that of Theorem 2 to show
consistency and asymptotic normality.

Proof of Theorem 3. (i) Note that the assumptions plus the additional regularity conditions
are stronger than those needed for correctly specified Bayesian posteriors (see, e.g., Theo-
rem 2.3 in Strasser, 1981). This guarantees consistency of the posterior distribution as a
whole in neighborhoods around θe,0 for e ∈ {Y, Z}. That is, for any open set U containing
θe,0,

lim
n→∞

π(U|Y ,X) = 1 , (A.4)

where π(U|Y ,X) is defined as the posterior probability in set U ; i.e.,

π(U|Y ,X) =

∫
U
π(θe|Y ,X) dθe =

∫
U

`e(θe)π(θe)∫
Θe
`e(θe)

dθe .

(ii) Similarly, under the established assumptions and regularity conditions, the Bayesian pos-
terior are consistent in a KL divergence sense. Formally, this implies that consistency is
not to θY,0, but to the KL pseudo-true values (minimizers of the KL divergence). Thus,
(A.4) holds for open sets U containing θ∗Y (see, e.g., Theorem 2.1 in Bunke and Milhaud,
1998).

Establishing posterior consistency yields mean and mode consistency of the posteriors, so that
(i) θ̌e

p→ θe,0 for e ∈ {Y, Z} and (ii) θ̌Y
p→ θ∗Y . The median can also be shown to hold this

property (see Remarks 3, 4, and 5 in Bunke and Milhaud, 1998).
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B Regularity Conditions

This is a list of the necessary regularity conditions required for the paper’s proofs. It essentially
reproduces the assumptions in White (1982) and Bunke and Milhaud (1998) that are not implied
by Assumptions 1–6.B. To simplify notation, let U = (Y ′,X ′)′ ⊂ Sd×X = Υ. Then, for u ∈ Υ
write F (u,θY ) = F (y|X = x;θY )PX(x) and let f(u,θY ) be its associated density. The density
g(u,θZ) is defined analogously. Both of these densities are assumed to be obtained with respect
to a measure ν.

Assumption R1. The densities f(u,θY ) and g(u,θZ) are measurable in u for all θY ∈ ΘY

and θZ ∈ ΘZ , as well as continuous in θY and θZ for all u ∈ Υ. ΘY and ΘZ are also assumed
to be compact.

Assumption R2. (i) The expectation E[log h(U )] exists and both log f(u,θY ) and log g(u,θZ)
are dominated by functions integrable with respect toH. (ii) KL(h, f ;θY ) has a unique minimum
at ψ∗ ∈ Ψ given δ0.

Assumption R3. The gradients ∂ log f(u,θY )/∂θY and ∂ log g(u,θZ)/∂θZ are measurable
functions of u for each θe ∈ Θe and continuously differentiable functions of θe for each u ∈ Υ,
where e ∈ {Y, Z}.

Assumption R4. These derivatives ‖∂2 log f(u,θY )/∂θY ∂θ
′
Y ‖2, ‖∂2 log g(u,θZ)/∂θZ∂θ

′
Z ‖2,

‖∂ log f(u,θY )/∂θY · ∂ log f(u,θY )/∂θ′Y ‖2 and ‖∂ log g(u,θZ)/∂θZ · ∂ log g(u,θZ)/∂θ′‖2 are
dominated by functions integrable with respect to H for all u ∈ Υ, θY ∈ ΘY and θZ ∈ ΘZ .

Assumption R5. For the information equality, ‖∂[∂ log f(u,θY )/∂θY · f(u,θY )]/∂θY ‖2 and
‖∂[∂ log g(u,θZ)/∂θZ · g(u,θZ)]/∂θZ ‖2 are dominated by functions integrable with respect to
ν for all θY ∈ ΘY and θZ ∈ ΘZ .

Assumption R6. (i) θY,0,θ
∗
Y ∈ int(ΘY ) and θZ,0 ∈ int(ΘZ); (ii) I(θY,0), I(θZ,0) and I(θ∗Y )

have constant rank in a neighborhood of their arguments; (iii) Jh(θ∗Y ) is nonsingular.

Assumption R7. There are positive constants c, b0 such that for all θY ∈ ΘY∫ ∥∥∥∥∂ log f(u,θY )

∂θY

∥∥∥∥4(|ΘY |+1)

2

f(u,θY )ν(du) < c(1 + ‖θY ‖b0) ,

where |ΘY | is the dimensionality of ΘY . The same condition holds for g(u,θZ).

Assumption R8. For some positive constant b1,
∫

[f(u,θY )h(u)]1/2ν(du) < c‖θY ‖−b1 and∫
[g(u,θZ)h(u)]1/2ν(du) < c‖θZ‖−b1 , for all θY ∈ ΘY and θZ ∈ ΘZ .

Assumption R9. Take e ∈ {Y, Z} and let S(θe, r) represent a ball centered at θe with radius
r. Then, π(θe) assigns probability π(S(θe, r)) > 0 for all θe ∈ Θe and r > 0, and there are
positive constants b2 and b3 so that for all θe ∈ Θe and r > 0 it holds that

π(S(θe, r)) ≤ c · rb2 [1 + (‖θe‖+ r)b3 ] .

C Additional Numerical Exercises
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Table C.8: Bayesian Point Estimates and Inference for an Extended Reduced Form Model

Variable Outcome 1 Outcome 2

Constant
−2.002 −2.033
(0.041) (0.043)

x1
0.841 0.848

(0.042) (0.043)

x2
−0.846 −0.828
(0.041) (0.042)

x3
0.869 0.871

(0.042) (0.043)

x4
−0.867 −0.892
(0.042) (0.042)

x5
0.849 0.861

(0.042) (0.043)

x6
−0.023 −0.026
(0.030) (0.031)

x7
−0.020 0.023
(0.030) (0.031)

x8
−0.015 −0.006
(0.029) (0.030)

x9
−0.026 −0.001
(0.031) (0.031)

x10
−0.018 −0.023
(0.030) (0.030)

Note: Bayesian estimates from a Gaussian copula with beta marginals specification. Entries denote
coefficient of the associated variable in each of the outcome equations. Standard errors (standard
deviation of the chains) in parentheses.
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Figure 9: Trace Plot of Elasticity Chains in an Extended Bayesian AID System
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Note: Results for the data set on married couples with one child. Combination of 5 chains with 800
draws each for a total of 4,000 draws.
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Figure 10: Density Plot of Elasticity Chains in an Extended Bayesian AID System

0.90 0.94 0.98
Income (1)

D
en

si
ty

0.8 0.9 1.0 1.1 1.2
Income (2)

D
en

si
ty

1.00 1.05 1.10 1.15
Income (3)

D
en

si
ty

−1.6 −1.4 −1.2 −1.0
Price (1) on Good (1)

−1.5 −1.0 −0.5 0.0
Price (1) on Good (2)

0.1 0.2 0.3 0.4 0.5 0.6
Price (1) on Good (3)

−0.25 −0.15 −0.05 0.05
Price (2) on Good (1)

−1.3 −1.2 −1.1 −1.0 −0.9 −0.8
Price (2) on Good (2)

−0.10 0.00 0.10 0.20
Price (2) on Good (3)

0.0 0.2 0.4 0.6 0.8 1.0
Price (3) on Good (1)

0.0 0.5 1.0 1.5 2.0
Price (3) on Good (2)

−1.8 −1.6 −1.4 −1.2
Price (3) on Good (3)

Note: Results for the data set on married couples with one child. Combination of 5 chains with 800
draws each for a total of 4,000 draws.
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